Main Article Content

Authors

Introduction: Between all thyroid carcinomas, the differentiated are predominant. According to the Colombian Association of Endocrinology, the relapse rate can be up to 30%, especially in patients older than 45 years old and with aggressive tumor characteristics. In this investigation, the time that elapses between the initial surgical treatment and the first relapse of the disease was estimated. Materials and methods: A data file was taken with the records of 469 patients with differentiated thyroid cancer (CDT) treated in a specialized clinic of fourth level of complexity iv in the city of Bogotá (Colombia). Data were collected between January 1997 and December 2012 and were statistically analyzed using parametric and non-parametric models to obtain survival curves and risk. Results: With the non-parametric method, it is evident that in 8.5 years 75% of the patients will not have presented the first relapse in CDT. While applying the parametric method 50% of patients who do not have a postreatment thyroglobulin or one less than or equal to 1 ng/mL and a tumour size less than or equal to 2 cm, their estimated time of First relapse was 29.2 years. Conclusions: Disease-free time and the risk of relapse for patients with CDT is affected by the presence of a tumor size greater than 2 cm at the time of consultation and levels of thyroglobulin greater than 1 ng/mL, recorded at the end of the treatment.

Madrid Idarraga, Y. K., Lizarazo Herrera, E. A., Alvear Rodríguez, C. A., Sánchez de Guzmán, G. ., & Tovar Cuevas, J. R. . (2022). Modeling of the Time it Takes for a Patient with Differentiated Thyroid Cancer to Present the First Relapse. Revista Ciencias De La Salud, 20(2). https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.9684

American Cancer Society. Cáncer de tiroides [internet]. 2014 [citado 2016 nov 4]. Disponible en: https://www.cancer.org/es/cancer/cancer-de-tiroides/acerca/que-es-cancer-de-tiroides.html

Sánchez G, Gutiérrez C, Valenzuela A, Tovar JR. Carcinoma diferenciado de la glándula tiroidea: hallazgos en 16 años de manejo multidisciplinario. Rev Colomb Cir. 2014;29(2):102-9.

International Agency for Research on Cancer. Thyroid cancer incidence [internet]; 2020 [citado 2022 feb 11]. Disponible en: https://gco.iarc.fr/today/online-analysis-table

Pardo Ramos C, Cendales Duarte R. Incidencia, mortalidad y prevalencia de cáncer en Colombia 2007-2011 [internet]. Bogotá: Instituto Nacional de Cancerología; 2015 [citado 2016 nov 4]. Disponible en: https://www.cancer.gov.co/files/libros/archivos/incidencia1.pdf

Mejía López A. Relación de la tiroglobulina pre-ablación con la recurrencia/persistencia temprana del cáncer diferenciado de tiroides [tesis de especialización]. Universidad del Rosario; 2011. Disponible en: https://repository.urosario.edu.co/bitstream/handle/10336/2732/Mejia-Lopez-Arturo-2011.pdf?sequence=1&isAllowed=y

Garavito G. Factores pronósticos para la recaída en pacientes con cáncer papilar de tiroides. Rev Colomb Cancerol. 2005;9(2):21-30.

Barakat A, Mittal A, Ricketts D, Rogers BA. Understanding survival analysis: actuarial life tables and the Kaplan-Meier plot. Br J Hosp Med. 2019;80(11):642-6. https://doi.org/10.12968/hmed.2019.80.11.642

Rao S, Schoenfeld D. Survival methods. Circulation. 2007;115(1):109-13. https://doi.org/10.1161/CIRCULATIONAHA.106.614859

Singh NS, Singh NS, Narendra R. Survival analysis of duration of waiting time to conception. Electron J App Stat Anal. 2011;4(2):144-54. https://doi.org/10.1285/i20705948v4n2p144

Valencia Orozco A, Parra Lara LG, Martínez JW, Tovar Cuevas JR. Aplicación de modelos paramétricos alternativos para el análisis de supervivencia de pacientes con cáncer. Rev Peru Med Exp Salud Publica. 2019;36(2):341-8. http://dx.doi.org/10.17843/rpmesp.2019.362.4269

Ciampi A, Hogg SA. Parametric models in the analysis of survival data and the generalized F family. Rivista di Statistica Applicata. 1987;20(3):231-49.

Burke K, MacKenzie G. Multi-parameter regression survival modeling: An alternative to proportional hazards. Biometrics. 2017;73(2):678-86. https://doi.org/10.1111/biom.12625

Montaseri M, Charati JY, Espahbodi F. Application of parametric models to a survival of hemodialysis patients. Nephrourol Mon. 2016;8(6):1-6. https://doi.org/10.5812/nu monthly.28738

Bakhshi E, Khoei RAA, Azarkeivan A, Kooshesh M, Biglarian A. Survival analysis of thalassemia major patients using Cox Gompertz proportional hazard and Weibull accelerated failure time models. Med J Islam Repub Iran. 2017;31(1):97-101. https://doi.org/10.14196/mjiri.31.97

Mazucheli J, Achcar JA, Coelho Barros EA, Louzada Neto F. A general survival regression model with nonconstant shape parameter. Rev Bras Biom. 2008; 26(2):27-40.

Banbeta A, Seyoum D, Belachew T, Birlie B, Getachew Y. Modeling time-to-cure from severe acute malnutrition: application of various parametric frailty models. Arch Public Health. 2015;73(1):6-14. https://doi.org/10.1186/2049-3258-73-6

Gelfand LA, MacKinnon DP, DeRubeis RJ, Baraldi AN. Mediation analysis with survival outcomes: accelerated failure time vs. proportional hazard models. Front Psychol. 2016;7(1):423-33. https://doi.org/10.3389/fpsyg.2016.00423

Janurová K. Mortality risk modelling in colorectal surgery using Weibull accelerated failure time regression model. The International Conference on Information and Digital Technologies. 2015;120-127. https://doi.org/10.1109/DT.2015.7222961

Islam M, Khan HR, Hawlader T. Modified profile likelihood estimation for the Weibull regression models in survival analysis. Commun Stat Theory Methods. 2019; 48(9):2329-43. https://www.tandfonline.com/doi/full/10.1080/03610926.2018.1472784

Khan SA. Exponentiated Weibull regression for time-to-event data. Lifetime Data Anal. 2018; 24(1):328-54. https://doi.org/10.1007/s10985-017-9394-3

Bradley E. Logistic regression, survival analysis, and the Kaplan-Meier curve. J Am Stat Assoc. 1988;83(402):414-25.

Oluyede BO, Makubate B, Fagbamigbe AF, Mdlongwa P. A New Burr XII-Weibulllogarithmic distribution for survival and lifetime data analysis: model, theory and applications. Stats. 2018;1(1):77-91. https://doi.org/10.3390/stats1010006

Arribalzaga EB. Interpretación de las curvas de supervivencia. Rev Chilena Cir. 2007;59(1):75-83. https://doi.org/10.4067/S0718-40262007000100013

Letón E, Zuluaga P. Cómo elegir el test adecuado para comparar curvas de supervivencia. Med Clin. 2006;127(3):96-99. https://doi.org/10.1157/13090265

Baghestani AR, Moghaddam SS, Majd HA, Akbari ME, Nafissi N, Gohari K. Survival analysis of patients with breast cancer using Weibull parametric model. Asian Pac J Cancer Prev. 2015;16(18):8567-71. https://doi.org/10.7314/APJCP.2015.16.18.8567

Lawless JF. Statistical models and methods for lifetime data. 2.ª ed. Hoboken: John Wiley & Sons; 2003.

Martinez EZ, Achcar JA. Bayesian bivariate generalized Lindley model for survival data with a cure fraction. Computer methods and programs in biomedicine. 2014; 117(2):145-57. https://doi.org/10.1016/j.cmpb.2014.07.011

Valencia Orozco A, Tovar Cuevas JR. Parametric survival model based on the Levy distribution. Commun Stat Appl Methods. 2019;26(5):445-61. https://doi.org/10.29220/CSAM.2019.26.5.445

Faraway JJ. Extending the linear model with R: Generalized linear, mixed affects and nonparametric regression models. 2.ª ed. Bath: CRC Press; 2016.

Bickel PJ, Doksum KA. Mathematical statistics: basic ideas and selected topics. 2.ª ed. Bath: CRC Press; 2015.

Casella G, Berger RL. Statistical inference. 2.ª ed. Duxbury: Pacific Grove; 2002.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.