Main Article Content

Authors

Introduction: Sepsis causes the body to damage its organs and tissues in the presence of infection. The objective was to develop an algorithm based on decision trees to analyze and classify mortality groups due to sepsis in adults. Material and methods: analytical and cross-sectional study of a secondary database of 102,389 adults. The variables were: hospital outcome, age group, sex, septic episodes, and hospitalized time. The decision tree was used for automatic chi-square interaction detection. Results: in young adults, the decision tree included sex, days hospitalized, and episodes of sepsis. In intermediate adults: age, sex, days hospitalized, and episodes of sepsis. In older people: sex, age, and days hospitalized. In young, intermediate, and older adults, it correctly classified 98.30%, 96.90%, and 89.80% of cases, respectively. In adults aged 18 to 59 years, 9.40%, 4%, and 0.90% died after the third, fourth, and fifth septic episode, respectively. In adults over 60 years of age, 4.60%, 1.80%, and 0.80% died in the third, fourth, and fifth episode, respectively. The percentages of patients alive since the second readmission were higher in older adults. Conclusions: age, sex, number of sepsis episodes, and length of hospital stay predict mortality from sepsis in adults. The number of sepsis episodes influences mortality in adults up to 59 years of age, but not in older adults, while age influences mortality in intermediate and older adults. Decision trees allow generating efficient predictive and classification models, which can complement the clinical and epidemiological profile of patients hospitalized for sepsis.

Guevara Tirado, A. (2025). Sepsis Mortality in Adults: Analysis using a Decision Tree-Based Algorithm. Revista Ciencias De La Salud, 23(2), 1–15. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.14307

Chakraborty RK, Burns B. Systemic inflammatory response syndrome. En: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing; 2025 [citado 2024 mar 15]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31613449/

Sun G-D, Zhang Y, Mo S-S, Zhao M-Y. Multiple organ dysfunction syndrome caused by sepsis: risk factor analysis. Int J Gen Med. 2021;14:7159-64. https://doi.org/10.2147/ijgm.s328419 DOI: https://doi.org/10.2147/IJGM.S328419

Dolin HH, Papadimos TJ, Chen X, Pan ZK. Characterization of pathogenic sepsis etiologies and patient profiles: a novel approach to triage and treatment. Microbiol Insights. 2019;12:117863611882508. https://doi.org/10.1177/1178636118825081 DOI: https://doi.org/10.1177/1178636118825081

Goligorsky MS, Sun D. Glycocalyx in endotoxemia and sepsis. Am J Pathol. 2020;190(4):791-8. https://doi.org/10.1016/j.ajpath.2019.06.017 DOI: https://doi.org/10.1016/j.ajpath.2019.06.017

Moriyama K, Nishida O. Targeting cytokines, pathogen-associated molecular patterns, and damage-associated molecular patterns in sepsis via blood purification. Int J Mol Sci. 2021;22(16):8882. https://doi.org/10.3390/ijms22168882 DOI: https://doi.org/10.3390/ijms22168882

Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov. 2023;9(1):1-11. https://doi.org/10.1038/s41420-023-01766-7 DOI: https://doi.org/10.1038/s41420-023-01766-7

Zhou M, Aziz M, Wang P. Damage-associated molecular patterns as double-edged swords in sepsis. Antioxid Redox Signal. 2021;35(15):1308-23. https://doi.org/10.1089/ars.2021.0008 DOI: https://doi.org/10.1089/ars.2021.0008

Ono S, Tsujimoto H, Hiraki S, Aosasa S. Mechanisms of sepsis‐induced immunosuppression and immunological modification therapies for sepsis. Ann Gastroenterol Surg. 2018;2(5):351-8. https://doi.org/10.1002/ags3.12194 DOI: https://doi.org/10.1002/ags3.12194

Cao C, Yu M, Chai Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis. 2019;10(10). https://doi.org/10.1038/s41419-019-2015-1 DOI: https://doi.org/10.1038/s41419-019-2015-1

Asim M, Amin F, El-Menyar A. Multiple organ dysfunction syndrome: contemporary insights on the clinicopathological spectrum. Qatar Med J. 2020;2020(2). https://doi.org/10.5339/qmj.2020.22 DOI: https://doi.org/10.5339/qmj.2020.22

Chen P, Tang Y, He W, Yang R, Lan Z, Chen R, et al. Potential pathophysiological mechanisms underlying multiple organ dysfunction in cytokine release syndrome. Mediators Inflamm. 2022;2022:1-17. https://doi.org/10.1155/2022/7137900 DOI: https://doi.org/10.1155/2022/7137900

Maneta E, Aivalioti E, Tual-Chalot S, Emini Veseli B, Gatsiou A, Stamatelopoulos K, et al. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol. 2023;14. https://doi.org/10.3389/fimmu.2023.1144229 DOI: https://doi.org/10.3389/fimmu.2023.1144229

Meng L. Heterogeneous impact of hypotension on organ perfusion and outcomes: a narrative review. Br J Anaesth. 2021;127(6):845-61. https://doi.org/10.1016/j.bja.2021.06.048 DOI: https://doi.org/10.1016/j.bja.2021.06.048

Shi H, Hong Y, Qian J, Cai X, Chen S. Xuebijing in the treatment of patients with sepsis. Am J Emerg Med. 2017;35(2):285-91. https://doi.org/10.1016/j.ajem.2016.11.007 DOI: https://doi.org/10.1016/j.ajem.2016.11.007

Zhang K, Zhang S, Cui W, Hong Y, Zhang G, Zhang Z. Development and validation of a Sepsis Mortality Risk Score for sepsis-3 patients in Intensive Care unit. Front Med (Lausanne). 2021;7. https://doi.org/10.3389/fmed.2020.609769 DOI: https://doi.org/10.3389/fmed.2020.609769

Jabri A, Fowler C, Dhamija Y, Alzubi J, Bhatia S, Al-abdouh A, et al. Demographic undertones for sepsis mortality in a community-based hospital. J Clin Med Res. 2022;14(1):28-33. https://doi.org/10.14740/jocmr4618 DOI: https://doi.org/10.14740/jocmr4618

Maharaj R, McGuire A, Street A. Association of annual intensive care unit sepsis caseload with hospital mortality from sepsis in the United Kingdom, 2010-2016. Jama Netw Open. 2021;4(6):e2115305. https://doi.org/10.1001/jamanetworkopen.2021.15305 DOI: https://doi.org/10.1001/jamanetworkopen.2021.15305

Villar J, Short JH, Lighthall G. Lactate predicts both short- and long-term mortality in patients with and without sepsis. Infect Dis (Auckl). 2019;12:117863371986277. https://doi.org/10.1177/1178633719862776 DOI: https://doi.org/10.1177/1178633719862776

Gattani SC, Baheti AH, Dubey A. Comparison of the performance of Apache II, SOFA, and mNUTRIC scoring systems in critically ill patients: a 2-year cross-sectional study. Indian J Crit Care Med. 2020;24(11):1057-61. https://doi.org/10.5005/jp-journals-10071-23549 DOI: https://doi.org/10.5005/jp-journals-10071-23549

Chicco D, Jurman G. Survival prediction of patients with sepsis from age, sex, and septic episode number alone. Sci Rep. 2020;10(1):1-12. https://doi.org/10.1038/s41598-020-73558-3 DOI: https://doi.org/10.1038/s41598-020-73558-3

Klumpp M, Hintze M, Immonen M, Ródenas-Rigla F, Pilati F, Aparicio-Martínez F, et al. Artificial intelligence for hospital health care: Application cases and answers to challenges in European hospitals. Healthcare (Basel). 2021;9(8):961. https://doi.org/10.3390/healthcare9080961 DOI: https://doi.org/10.3390/healthcare9080961

Ibarz M, Haas LEM, Ceccato A, Artigas A. The critically ill older patient with sepsis: a narrative review. Ann Intensive Care. 2024;14(1). https://doi.org/10.1186/s13613-023-01233-7 DOI: https://doi.org/10.1186/s13613-023-01233-7

Knoop ST, Skrede S, Langeland N, Flaatten HK. Epidemiology and impact on all-cause mortality of sepsis in Norwegian hospitals: a national retrospective study. PLoS One. 2017;12(11):e0187990. https://doi.org/10.1371/journal.pone.0187990 DOI: https://doi.org/10.1371/journal.pone.0187990

CC BY 4.0 Deed | Atribución 4.0 Internacional [internet]. Creative Commons [citado 2024 mar 15]. Disponible en: https://creativecommons.org/licenses/by/4.0/deed.es

Choi H-Y, Kim E-Y, Kim J. Prognostic factors in diabetes: comparison of Chi-square automatic interaction detector (CHAID) decision tree technology and logistic regression. Medicine (Baltimore). 2022;101(42):e31343. https://doi.org/10.1097/md.0000000000031343 DOI: https://doi.org/10.1097/MD.0000000000031343

Ye F, Chen Z-H, Chen J, Liu F, Zhang Y, Fan Q-Y, et al. Chi-squared automatic interaction detection decision tree analysis of risk factors for infant anemia in Beijing, China. Chin Med J (Engl). 2016;129(10):1193-9. https://doi.org/10.4103/0366-6999.181955 DOI: https://doi.org/10.4103/0366-6999.181955

IBM Documentation [internet]. IBM. 2021 [citado 2024 mar 15]. Disponible en: https://www.ibm.com/docs/es/spss-modeler/saas?topic=nodes-chaid-node

Plos One. Licenses and copyright [internet]. [Citado 2024 mar 15]. Disponible en: https://journals.plos.org/plosone/s/licenses-and-copyright

Goodwin AJ, Ford DW. Readmissions among sepsis survivors: risk factors and prevention. Clin Pulm Med. 2018;25(3):79-83. https://doi.org/10.1097/CPM.0000000000000254 DOI: https://doi.org/10.1097/CPM.0000000000000254

Chaudhry Bortolani A, Fantin F, Giani A, Zivelonghi A, Pernice B, Bortolazzi E, et al. Predictors of hospital readmission rate in geriatric patients. Aging Clin Exp Res. 2024;36(1). https://doi.org/10.1007/s40520-023-02664-9 DOI: https://doi.org/10.1007/s40520-023-02664-9

Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the immune response with aging: immunosenescence and its potential impact on COVID-19 immune response. Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.01748 DOI: https://doi.org/10.3389/fimmu.2020.01748

De Waele E, Malbrain MLNG, Spapen H. Nutrition in sepsis: a bench-to-bedside review. Nutrients. 2020;12(2):395. https://doi.org/10.3390/nu12020395 DOI: https://doi.org/10.3390/nu12020395

Seidel G, Gaser C, Götz T, Günther A, Hamzei F. Accelerated brain ageing in sepsis survivors with cognitive long‐term impairment. Eur J Neurosci. 2020;52(10):4395-402. https://doi.org/10.1111/ejn.14850 DOI: https://doi.org/10.1111/ejn.14850

Chang DW, Tseng C-H, Shapiro MF. Rehospitalizations following sepsis: common and costly. Crit Care Med. 2015;43(10):2085-93. https://doi.org/10.1097/CCM.0000000000001159 DOI: https://doi.org/10.1097/CCM.0000000000001159

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.