Main Article Content

Authors

Introduction: Living at high altitude increases oxidative stress. Likewise, growth and maturation during adolescence can increase levels of reactive oxygen species (ROS). Changes in redox profiles have been evaluated in adults living at high altitudes; however, there are no studies on these changes in peripubertal populations living at moderate altitudes, we determine how living at moderate altitude affects the oxidative and inflammatory status of healthy preadolescents and adolescents. Materials and Methods: A cross-sectional study was conducted in healthy male Colombian preadolescents and adolescents (9–18 years old, Tanner scale classification) who lived at low altitude (n = 26) or moderate altitude (n = 26). Plasma oxidative and inflammatory status was assessed via spectrophotometry. Oxidative markers included malondialdehyde, 4-hydroxy-trans-2-nonenal, and carbonyl groups. Antioxidant markers included total antioxidant status, glutathione, catalase, superoxide dismutase, uric acid, and thiols. Inflammatory markers included interleukins-1, -6, and -10 and tumor necrosis factor. Results: Only uric acid levels were higher in adolescents (5.34 and 5.66 mg/dl) compared to preadolescents (3.85 and 4.07 mg/dl) in both moderate and low altitude groups, respectively. Participants who lived at moderate altitude presented significantly higher levels of malondialdehyde (4.82 and 3.73 nM/mg protein) and lower level of glutathione and thiols (1.21 and 1.26 μmol/mg protein) than in those at low altitude. Their inflammatory profiles did not differ. Conclusion: Oxidant profiles increased in peripubertal populations residing at moderate altitude; this could be owing to antioxidant consumption by ROS and active metabolism during puberty.

Ramos-Caballero, D. M., Rodríguez-Rodríguez, P. ., Mancera-Soto, E., Martins, S., Arribas, S. M., Magalhães, J., & Cristancho-Mejía, E. (2022). Effect of Chronic Altitude Hypoxia on Redox Balance in Preadolescents and Adolescents. Revista Ciencias De La Salud, 20(3). https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.10247

Lichtenberg D, Pinchuk I. Oxidative stress, the term and the concept. Biochem Biophys Res Commun. 2015;461(3):441-4. https://doi.org/10.1016/j.bbrc.2015.04.062

Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017;12:208-15. https://doi.org/10.1016/j.redox.2017.02.012

McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 2018;125:15-24. https://doi.org/10.1016/j.freeradbiomed.2018.03.042

Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free RadicRes. 2017;51(2):222-36. doi: 10.1080/10715762.2017.1291942

Stöwhas AC, Latshang TD, Lo Cascio CML, Lautwein S, Stadelmann K, Tesler N, et al. Effects of acute exposure to moderate altitude on vascular function, metabolism and systemic inflammation. PLoS ONE. 2013;8(8):e70081. https://doi.org/10.1371/journal.pone.0070081

Brothers MD, Doan BK, Zupan MF, Wile AL, Wilber RL, Byrnes WC. Hematological and physiological adaptations following 46 weeks of moderate altitude residence. High Alt Med Biol. 2010;11(3):199-208. https://doi.org/10.1089/ham.2009.1090

dane/Colombia. Censo nacional de población y vivienda (cnpv); 2018 [cited 2020 Dec 18]. Available from: http://microdatos.dane.gov.co/index.php/catalog/643/get_microdata

Bailey DM. Oxygen, evolution and redox signalling in the human brain; quantum in the quotidian. J Physiol. 2019;597(1):15-28. https://doi.org/10.1113/JP276814

Janocha AJ, Comhair SAA, Basnyat B, Neupane M, Gebremedhin A, Khan A, et al. Antioxidant defense and oxidative damage vary widely among high-altitude residents. Am J Hum Biol. 2017;29(6). https://doi.org/10.1002/ajhb.23039

Magalhães J, Ascensão A, Marques F, Soares JM, Ferreira R, Neuparth MJ, et al. Effect of a high-altitude expedition to a Himalayan peak (Pumori, 7,161 m) on plasma and erythrocyte antioxidant profile. Eur J Appl Physiol. 2005;93(5-6):726-32. https://doi.org/10.1007/s00421-004-1222-2

Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Rahbari-Oskoui F. Increased oxidative stress in younger as well as in older humans. Clin Chim Acta. 2003;328(1-2):83-6. https://doi.org/10.1016/S0009-8981(02)00380-7

Kogawa T, Nishimura M, Kurauchi S, Kashiwakura I. Characteristics of reactive oxygen metabolites in serum of early teenagers in Japan. Environ Health Prev Med. 2012;17(5):364-70. https://doi.org/10.1007/s12199-011-0261-7

Granot E, Kohen R. Oxidative stress in childhood--in health and disease states. Clin Nutr. 2004;23(1):3-11. https://doi.org/10.1016/S0261-5614(03)00097-9

Pérez-Navero JL, Benítez-Sillero JD, Gil-Campos M, Guillén-del Castillo M, Tasset I, Túnez I. Changes in oxidative stress biomarkers induced by puberty. An Pediatr (Barc). 2009;70(5):4248. https://doi.org/10.1016/j.anpedi.2009.01.019

Tsukahara H. Biomarkers for oxidative stress: clinical application in pediatric medicine. Curr Med Chem. 2007;14(3):339-51. https://doi.org/10.2174/092986707779941177

Bärtsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18;Suppl 1:1-10. https://doi.org/10.1111/j.1600-0838.2008.00827.x

Tanner JM. The measurement of maturity. Trans Eur Orthod Soc. 1975:45-60.

Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709-23.

Ramiro-Cortijo D, Calle M, Rodríguez-Rodríguez P, Pablo ÁLL, López-Giménez MR, Aguilera Y et al. Maternal antioxidant status in early pregnancy and development of fetal complications in twin pregnancies: a pilot study. Antioxidants (Basel). 2020;9(4). https://doi.org/10.3390/antiox9040269

Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology. 2002;180(2):107-19. https://doi.org/10.1016/s0300-483x(02)00385-2

Pomar IGM, Erquicia EB, Colmena LT, Barrera SQ, Vargas PLS. Concentration of malondialdehyde in subjects living at high altitudes: exploratory study. Rev Peru Med Exp Salud Publica. 2017;34(4):677-81. https://doi.org/10.17843/rpmesp.2017.344.2830

Sinha S, Ray US, Tomar OS, Singh SN. Different adaptation patterns of antioxidant system in natives and sojourners at high altitude. Respir Physiol Neurobiol. 2009;167(3):255-60. https://doi.org/10.1016/j.resp.2009.05.003

Soto-Méndez MJ, Romero-Abal ME, Aguilera CM, Rico MC, Solomons NW, Schümann K, et al. Associations among inflammatory biomarkers in the circulating, plasmatic, salivary and intraluminal anatomical compartments in apparently healthy preschool children from the Western Highlands of Guatemala. Plos One. 2015;10(6):e0129158. https://doi.org/10.1371/journal.pone.0129158

Zalavras A, Fatouros IG, Deli CK, Draganidis D, Theodorou AA, Soulas D, et al. Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. Oxid Med Cell Longev. 2015;2015:283921. https://doi.org/10.1155/2015/283921

Bakonyi T, Radak Z. High altitude and free radicals. J Sports Sci Med. 2004;3(2):64-9.

Magalhães J, Oliveira J, Ascensão A. Oxidative stress in high-altitude hypoxia. Is it truly a paradox? Muscle Plast Adv Biochem Physiol Res. 2009:121-50.

Oliveira PVS, Laurindo FRM. Implications of plasma thiol redox in disease. Clin Sci (Lond). 2018;132(12):1257-80. https://doi.org/10.1042/CS20180157

Imai H, Kashiwazaki H, Suzuki T, Kabuto M, Himeno S, Watanabe C, et al. Selenium levels and glutathione peroxidase activities in blood in an Andean high-altitude population. J Nutr Sci Vitaminol (Tokyo). 1995;41(3):349-61. https://doi.org/10.3177/jnsv.41.349

Soto-Méndez MJ, Aguilera CM, Mesa MD, Campaña-Martín L, Martín-Laguna V, Solomons NW, et al. Strong associations exist among oxidative stress and antioxidant biomarkers in the circulating, cellular and urinary anatomical compartments in Guatemalan children from the Western Highlands. Plos One. 2016;11(1). https://doi.org/10.1371/journal.pone.0146921

Ramón C, Dora J, Villavicencio Villanueva JN. Indicadores de estrés oxidativo en eritrocitos de una población de Huaraz; 2013.31. Paltoglou G, Fatouros IG, Valsamakis G, Schoina M, Avloniti A, Chatzinikolaou A, et al. Antioxidation improves in puberty in normal weight and obese boys, in positive association with exercise-stimulated growth hormone secretion. Pediatr Res. 2015;78(2):158-64. https://doi.org/10.1038/pr.2015.85

Maciejczyk M, Zalewska A, Ładny JR. Salivary antioxidant barrier, redox status, and oxidative damage to proteins and lipids in healthy children, adults, and the elderly. Oxid Med Cell Longev. 2019;2019:4393460. https://doi.org/10.1155/2019/4393460

Cooper DM, Nemet D, Galassetti P. Exercise, stress, and inflammation in the growing child: from the bench to the playground. Curr Opin Pediatr. 2004;16(3):286-92. https://doi.org/10.1097/01.mop.0000126601.29787.39

Prijanti AR, Iswanti FC, Ferdinal F, Jusman SWA, Soegianto RR, Wanandi SI, et al. Hypoxia increased malondialdehyde from membrane damages is highly correlated to HIF-1α but not to renin expression in rat kidney. IOP Conf Ser Earth Environ Sci. 2019;217:012062. https://doi.org/10.1088/1755-1315/217/1/012062

Catherine C, Ferdinal F. Effect of chronic systemic hypoxia on malondialdehyde (MDA) levels in blood and kidney tissue of Sprague Dawley rats; 2019.

Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med. 2017;111:316-27. https://doi.org/10.1016/j.freeradbiomed.2017.04.363

Fang Y-Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872-9. https://doi.org/10.1016/S0899-9007(02)00916-4

McLeay Y, Stannard S, Houltham S, Starck C. Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation. J Int Soc Sports Nutr. 2017;14:12. https://doi.org/10.1186/s12970-017-0168-9

Zanella PB, August PM, Alves FD, Matté C, de Souza CG. Association of Healthy Eating Index and oxidative stress in adolescent volleyball athletes and non-athletes. Nutrition. 2019;60:230-4. https://doi.org/10.1016/j.nut.2018.10.017

Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, et al. Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: A narrative review. Sports Med. 2019;49(Suppl 2):169-84. https://doi.org/10.1007/s40279-019-01159-w

Avloniti A, Chatzinikolaou A, Deli CK, Vlachopoulos D, Gracia-Marco L, Leontsini D, et al. Exercise-induced oxidative stress responses in the pediatric population. Antioxidants (Basel). 2017;6(1). https://doi.org/10.3390/antiox6010006

Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 2000;12(3):246-52. https://doi.org/10.1006/cyto.1999.0533

Al-Hashem FH, Assiri AS, Shatoor AS, Elrefaey HM, Alessa RM, Alkhateeb MA. Increased systemic low-grade inflammation in high altitude native rats mediated by adrenergic receptors. Saudi Med J. 2014;35(6):538-46.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.