Contenido principal del artículo

Autores/as

Los psicodélicos son psicoactivos que alteran la percepción, el estado de ánimo y la cognición. Desde de los 50s se ha estudiado su relación molecular con el sistema serotoninérgico, lo que se ha evidenciado a través de la neuroimagen. El objetivo de esta revisión es realizar una evaluación de los efectos y la potencia de los psicodélicos en diferentes dimensiones (molecular, subjetiva, física y neurobiológica). Para ello, se llevó a cabo una revisión de artículos (PRISMA-ScR) publicados entre 1960 - 2022, buscando en PubMed, Medline, PsycINFO y EMBASE en inglés y español. En los resultados se da cuenta de los desafíos a los que se enfrenta la investigación interdisciplinar de la acción de estas sustancias en lo molecular (la psicofarmacología), lo estructural (la neurobiología) y en lo subjetivo (lo psicológico) y más que dar respuestas específicas, proporciona una visión panorámica del fenómeno estudiado: sus hallazgos históricos, los nuevos conocimientos mediados por la tecnología actual, la comparación sintética de los efectos subjetivos, una breve descripción de las hipótesis neurobiológicas  actuales e identifica los vacíos de conocimiento sobre el tema.

Castaño, G., Iguarán, S., Murillo , L., & Espinosa Duque, D. (2025). Efecto y potencia de los psicodélicos a nivel psicofarmacológico, psicológico y neurobiológico: una revisión de alcance. Avances En Psicología Latinoamericana , 42(2), 1–22. https://doi.org/10.12804/revistas.urosario.edu.co/apl/a.13339

Atasoy, S., Vohryzek, J., Deco, G., Carhart-Harris, R. L., & Kringelbach, M. L. (2018). Common neural signatures of psychedelics: frequency-specific energy changes and repertoire expansion revealed using connectome-harmonic decomposition. Progress in Brain Research, 242, 97-120. https://doi.org/10.1016/bs.pbr.2018.08.009

Barker, S. A. (2018). N, N-Dimethyltryptamine (DMT), an endogenous hallucinogen: Past, present, and future research to determine its role and function. Frontiers in neuroscience, 12, 536. https://doi.org/10.3389/fnins.2018.00536

Barker, S. A. (2022). Administration of N, N-dimethyltryptamine (DMT) in psychedelic therapeutics and research and the study of endogenous DMT. Psychopharmacology, 239(6), 1749-1763. https://doi.org/10.1007/s00213-022-06065-0

Blair, J. B., Kurrasch-Orbaugh, D., Marona-Lewicka, D., Cumbay, M. G., Watts, V. J., Barker, E. L., & Nichols, D. E. (2000). Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. Journal of medicinal chemistry, 43(24), 4701-4710. https://doi.org/10.1021/jm000339w

Branchi, I. (2011). The double-edged sword of neural plasticity: increasing serotonin levels leads to both greater vulnerability to depression and improved capacity to recover. Psychoneuroendocrinology, 36(3), 339-351. https://doi.org/10.1016/j.psyneuen.2010.08.011

Bradshaw, C. M., Roberts, M. H. T., & Szabadi, E. (1971). Effect of mescaline on single cortical neurones. British Journal of Pharmacology, 43(4), 871. https://doi.org/10.1111/j.1476-5381.1971.tb07225.x

Bouso, J. C., Pedrero‐Pérez, E. J., Gandy, S., & Alcázar‐Córcoles, M. Á. (2016). Measuring the subjective: revisiting the psychometric properties of three rating scales that assess the acute effects of hallucinogens. Human Psychopharmacology: Clinical and Experimental, 31(5), 356-372. https://doi.org/10.1002/hup.2545

Carbonaro, T. M., & Gatch, M. B. (2016). Neuropharmacology of N, N-dimethyltryptamine. Brain research bulletin, 126, 74-88. https://doi.org/10.1016/j.brainresbull.2016.04.016

Carhart-Harris, R. L., & Friston, K. J. (2010). The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain: a journal of neurology, 133(4), 1265-1283. https://doi.org/10.1093/brain/awq010

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacological reviews, 71(3), 316-344. https://doi.org/10.1124/pr.118.017160

Carhart-Harris, R. L., Leech, R., Erritzoe, D., Williams, T. M., Stone, J. M., Evans, J., … & Nutt, D. J. (2013). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophrenia bulletin, 39(6), 1343-1351. https://doi.org/10.1124/pr.118.017160

Carhart-Harris, R. L., & Nutt, D. J. (2010). User perceptions of the benefits and harms of hallucinogenic drug use: A web-based questionnaire study. Journal of substance use, 15(4), 283-300. https://doi.org/10.3109/14659890903271624

Carhart-Harris, R. & Nutt, D. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 1091–1120. https://doi.org/10.1177/0269881117725915

Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., … & Nutt, D. J. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Scientific reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-13282-7

Deakin, J. F. W. (2013). The origins of ‘5-HT and mechanisms of defence’by Deakin and Graeff: a personal perspective. Journal of psychopharmacology, 27(12), 1084-1089. https://doi.org/10.1177/0269881113503508

Dinis-Oliveira, R. J., Pereira, C. L., & da Silva, D. D. (2019). Pharmacokinetic and pharmacodynamic aspects of peyote and mescaline: clinical and forensic repercussions. Current molecular pharmacology, 12(3), 184. https://doi.org/10.2174/1874467211666181010154139

Ermakova, A. O., Dunbar, F., Rucker, J., & Johnson, M. W. (2022). A narrative synthesis of research with 5-MeO-DMT. Journal of Psychopharmacology, 36(3), 273-294. https://doi.org/10.1177/02698811211050543

Fantegrossi, W. E., Murnane, K. S., & Reissig, C. J. (2008). The behavioral pharmacology of hallucinogens. Biochemical pharmacology, 75(1), 17-33. https://doi.org/10.1016/j.bcp.2007.07.018

Golan, D. E., Tashjian, A. H., & Armstrong, E. J. (Eds.). (2011). Principles of pharmacology: the pathophysiologic basis of drug therapy. Lippincott Williams & Wilkins.

Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, et al. (2005): Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): A double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 38:301–311. https://doi.org/10.1055/s-2005-916185

Griffiths RR, Richards WA, McCann U, Jesse R (2006): Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berl) 187:268–283. https://doi.org/10.1007/s00213-006-0457-5

Halberstadt, A. L., & Geyer, M. A. (2011). Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 61(3), 364-381. https://doi.org/10.1016/j.neuropharm.2011.01.017

Halberstadt, A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behavioural brain research, 277, 99-120. https://doi.org/10.1016/j.bbr.2014.07.016

Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J., & Brandt, S. D. (2020). Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 167, 107933. https://doi.org/10.1016/j.neuropharm.2019.107933

Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX (2004): Acute psychological and physiological effects of psilocybin in healthy humans: A double-blind, placebo-controlled dose-effect study. Psychopharmacology 172:145–156. https://doi.org/10.1007/s00213-003-1640-6

Hintzen, A., & Passie, T. (2010). The pharmacology of LSD. OUP Oxford.

Hill, S. L., & Thomas, S. H. (2011). Clinical toxicology of newer recreational drugs. Clinical toxicology, 49(8), 705-719. https://doi.org/10.3109/15563650.2011.615318

Hofmann, A., Heim, R., Brack, A., Kobel, H., Frey, A., Ott, H., ... & Troxler, F. (1959). Psilocybin und Psilocin, zwei psycahotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helvetica Chimica Acta, 42(5), 1557-1572. https://doi.org/10.1002/hlca.19590420518

Hysek CM, Simmler LD, Schillinger N, Meyer N, Schmid Y, Donzelli M, et al. (2014): Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone and in combination. Int J Neuropsychopharmacol 17:371–381. , https://doi.org/10.1017/S1461145713001132

Jakab RL, Goldman-Rakic PS (1998): 5-Hydroxytryptamine2A serotonin receptors in the primate cerbral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci 95:735–740 https://doi.org/10.1073/pnas.95.2.735

Joyce, I. (2017). A comparative literature survey of psilocybin and LSD-25 metabolism. https://scholarworks.calstate.edu/concern/theses/m039k698q

Kalant, H. (2001). The pharmacology and toxicology of “ecstasy”(MDMA) and related drugs. Cmaj, 165(7), 917-928. https://www.cmaj.ca/content/165/7/917

Kotz, J. C., Treichel, P. M., Townsend, J., & Treichel, D. (2014). Chemistry & chemical reactivity. Cengage Learning.

Kometer, M., Pokorny, T., Seifritz, E., & Volleinweider, F. X. (2015). Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology, 232, 3663-3676. https://doi.org/10.1007/s00213-015-4026-7

Kometer, M., Schmidt, A., Jäncke, L., & Vollenweider, F. X. (2013). Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. Journal of Neuroscience, 33(25), 10544-10551. https://doi.org/10.1523/JNEUROSCI.3007-12.2013

López-Giménez JF, Mengod G, Palacios JM, Vilaro MT (1997): Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H] MDL 100,907. Naunyn- Schmiedeberg’s Arch Pharmacol 356:446–454 https://doi.org/10.1007/pl00005075

López-Giménez, J. F., & González-Maeso, J. (2018). Hallucinogens and serotonin 5-HT 2A receptor-mediated signaling pathways. Behavioral Neurobiology of Psychedelic Drugs, 45-73. https://link.springer.com/chapter/10.1007/7854_2017_478

Lord, L. D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte, R., & Cabral, J. (2019). Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. NeuroImage, 199, 127-142. https://doi.org/10.1016/j.neuroimage.2019.05.060

Lowe, H., Toyang, N., Steele, B., Grant, J., Ali, A., Gordon, L., & Ngwa, W. (2022). Psychedelics: alternative and potential therapeutic options for treating mood and anxiety disorders. Molecules, 27(8), 2520. https://doi.org/10.3390/molecules27082520

Martin, D. A., & Nichols, C. D. (2018). The effects of hallucinogens on gene expression. Behavioral Neurobiology of Psychedelic Drugs, 137-158. https://link.springer.com/chapter/10.1007/7854_2017_479

McKenna, D. J., Repke, D. B., Lo, L., & Peroutka, S. J. (1990). Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 29(3), 193-198. https://doi.org/10.1016/0028-3908(90)90001-8

McKenna, D., & Riba, J. (2018). New world tryptamine hallucinogens and the neuroscience of ayahuasca. Behavioral Neurobiology of Psychedelic Drugs, 283-311. https://link.springer.com/chapter/10.1007/7854_2016_472

McMurry, J. E. (2014). Organic chemistry with biological applications. Cengage Learning.

Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res. 2014 Nov 21;14:579. https://doi.org/10.1186/s12913-014-0579-0

Milliere, R. (2017). Looking for the self: phenomenology, neurophysiology and philosophical significance of drug-induced ego dissolution. Frontiers in human neuroscience, 245. https://doi.org/10.3389/fnhum.2017.00245

Miyazaki, K., Miyazaki, K. W., & Doya, K. (2012). The role of serotonin in the regulation of patience and impulsivity. Molecular neurobiology, 45, 213-224.

Moreno, J. L., Holloway, T., Albizu, L., Sealfon, S. C. & González-Maeso, J. (2011). Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neuroscience Letters, 493(3), 76- 79. https://doi.org/10.1016/j.neulet.2011.01.046

Müller, F., Lenz, C., Dolder, P., Lang, U., Schmidt, A., Liechti, M. & Borgwardt, S. (2017). Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatrica Scandinavica, 136(6), 648–657. https://doi.org/10.1111/acps.12818

Müller, F., Liechti, M. E., Lang, U. E., & Borgwardt, S. (2018). Advances and challenges in neuroimaging studies on the effects of serotonergic hallucinogens: Contributions of the resting brain. Progress in brain research, 242, 159-177. https://doi.org/10.1016/bs.pbr.2018.08.004

Nichols, D. E. (2004). Hallucinogens. Pharmacology & Therapeutics, 101(2), 131-181. https://doi.org/10.1016/j.pharmthera.2003.11.002

Nichols D. E. (2016). Psychedelics. Pharm. Rev. 68, 264–355. 10.1124/pr.115.011478 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Nichols, D. E. (2018). Chemistry and structure–activity relationships of psychedelics. Behavioral Neurobiology of Psychedelic Drugs, 1-43.

Passie, T., Seifert, J., Schneider, U., & Emrich, H. M. (2002). The pharmacology of psilocybin. Addiction biology, 7(4), 357–364. https://doi.org/10.1080/1355621021000005937

Passie, T., Halpern, J. H., Stichtenoth, D. O., Emrich, H. M., & Hintzen, A. (2008). The pharmacology of lysergic acid diethylamide: a review. CNS neuroscience & therapeutics, 14(4), 295-314. https://doi.org/10.1111/j.1755-5949.2008.00059.x

Poldrack, R. A., et al. (2017). "Scanning the horizon: towards transparent and reproducible neuroimaging research." Nature Reviews Neuroscience 18(2): 115-126. https://doi.org/10.1038/nrn.2016.167

Preller, K. H., Pokorny, T., Hock, A., Kraehenmann, R., Stämpfli, P., Seifritz, E., ... & Vollenweider, F. X. (2016). Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proceedings of the National Academy of Sciences, 113(18), 5119-5124. https://doi.org/10.1073/pnas.1524187113

Preller, K. H., Herdener, M., Pokorny, T., Planzer, A., Kraehenmann, R., Stämpfli, P., & Vollenweider, F. X. (2017). The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Current Biology, 27(3), 451-457. https://doi.org/10.1016/j.cub.2016.12.030

Preller, K. H., Schilbach, L., Pokorny, T., Flemming, J., Seifritz, E. & Vollenweider, F. X. (2018). Role of the 5-HT2A receptor in self- and other-initiated social interaction in Lysergic Acid Diethylamide-induced states: A pharmacological fMRI study. Journal of Neuroscience, 38(14), 3603-3611. https://doi.org/10.1523/JNEUROSCI.1939-17.2018

Riba, J., Rodríguez-Fornells, A., Urbano, G., Morte, A., Antonijoan, R., Montero, M., Callaway, J. C., & Barbanoj, M. J. (2001). Subjective effects and tolerability of the South American psychoactive beverage Ayahuasca in healthy volunteers. Psychopharmacology, 154(1), 85–95. https://doi.org/10.1007/s002130000606

Roth, B. L. (Ed.). (2008). The serotonin receptors: from molecular pharmacology to human therapeutics. Springer Science & Business Media.

Rang, R., Ritter, J. M., Flower, R. J., & Henderson, G. (2015). Rang & dale farmacologia. Elsevier Brasil.

Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K., & Muthukumaraswamy, S. D. (2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Scientific reports, 7(1), 46421. https://doi.org/10.1038/srep46421

Shipp, S. (2016). Neural elements for predictive coding. Frontiers in psychology, 7, 1792. https://doi.org/10.3389/fpsyg.2016.01792

Schmid, Y., Enzler, F., Gasser, P., Grouzmann, E., Preller, K. H., Vollenweider, F. X., & Liechti, M. E. (2015). Acute effects of lysergic acid diethylamide in healthy subjects. Biological psychiatry, 78(8), 544-553. https://doi.org/10.1016/j.biopsych.2014.11.015

Schmid Y, Hysek CM, Simmler LD, Crockett MJ, Quednow BB, Liechti ME (2014): Differential effects of MDMA and methylphenidate on social cognition. J Psychopharmacol 28:847–856. https://doi.org/10.1177/0269881114542454

Shulgin A. T. (1973): Mescaline: The chemistry and pharmacology of its analogs. Lloydia 36:46–58

Schultes, R. E., & Hofmann, A. (1980). The Botany and Chemistry of Hallucinogens, 2nd. Edition. Charles C. Thomas, Publishers, Springfield, Ill.

Smigielski, L., Scheidegger, M., Kometer, M. & Vollenweider, F. X. (2019). Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. NeuroImage, 196, 207–215. https://doi.org/10.1016/j.neuroimage.2019.04.009

Snyder, S. H., & Merril, C. R. (1965). A relationship between the hallucinogenic activity of drugs and their electronic configuration. Proceedings of the National Academy of Sciences, 54(1), 258-266. https://doi.org/10.1073/pnas.54.1.258

Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994): Doseresponse study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51:98–108. https://doi.org/10.1001/archpsyc.1994.03950020022002

Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. C. (Eds.). (2012). Fundamental neuroscience. Academic press.

Swanson, L. R. (2018). Unifying theories of psychedelic drug effects. Frontiers in pharmacology, 172. https://doi.org/10.3389/fphar.2018.00172

Szara, S. (1967). Hallucinogenic amines and schizophrenia (with a brief addendum on N-dimethyltryptamine). In Amines and Schizophrenia (pp. 181-197). Pergamon. https://doi.org/10.1016/B978-0-08-012039-3.50018-X

Titeler M, Lyon RA, Glennon RA (1988): Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94:213–216 https://doi.org/10.1007/BF00176847

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., ... & Clifford, T. Ö Tunçalp, Straus SE. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine, 169(7), 467-473. https://doi.org/10.7326/M18-0850

Turner, W. J., & Merlis, S. (1959). Effect of some indolealkylamines on man. AMA Archives of Neurology & Psychiatry, 81(1), 121-129. https://doi.org/10.1001/archneurpsyc.1959.02340130141020

Tylš, F., Páleníček, T., & Horáček, J. (2014). Psilocybin–summary of knowledge and new perspectives. European Neuropsychopharmacology, 24(3), 342-356. https://doi.org/10.1016/j.euroneuro.2013.12.006

Vollenweider, F. X., & Kometer, M. (2010). The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nature Reviews Neuroscience, 11(9), 642-651. https://doi.org/10.1038/nrn2884

Wittmann, M., Carter, O., Hasler, F., Cahn, B. R., Grimberg, U., Spring, P., … & Vollenweider, F. X. (2007). Effects of psilocybin on time perception and temporal control of behaviour in humans. Journal of Psychopharmacology, 21(1), 50-64. https://doi.org/10.1177/0269881106065859

Wolbach, A. B., Miner, E. J., & Isbell, H. (1962). Comparison of psilocin with psilocybin, mescaline and LSD-25. Psychopharmacologia, 3, 219-223. https://doi.org/10.1007/BF00412109

Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., & Yao, S. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biological psychiatry, 71(7), 611-617. https://doi.org/10.1016/j.biopsych.2011.10.035

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 6 7 8 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.