Main Article Content

Authors

Psychedelics are psychoactive substances that alter perception, mood, and cognition. Since the 1950s, their molecular relationship with the serotonergic system has been studied and evidenced through neuroimaging. The objective of this review is to assess the effects and potency of psychedelics in different dimensions (molecular, subjective, physical, and neurobiological). A systematic review of articles (PRISMA-ScR) published between 1960 and 2022 was conducted, searching PubMed, Medline, PsycINFO, and EMBASE in English and Spanish. The results highlight the interdisciplinary research challenges in understanding the molecular (psychopharmacology), structural (neurobiology), and subjective (psychological) aspects of these substances. Rather than providing specific answers, this review offers a panoramic view of the studied phenomenon, including historical findings, new knowledge facilitated by current technology, synthetic comparison of subjective effects, a brief description of current neurobiological hypotheses, and identifies knowledge gaps in the field.

Castaño, G., Iguarán, S., Murillo , L., & Espinosa Duque, D. (2025). Effect and Potency of Psychedelics at the Psychopharmacological, Psychological, and Neurobiological Levels: A Scoping Review. Avances En Psicología Latinoamericana, 42(2), 1–22. https://doi.org/10.12804/revistas.urosario.edu.co/apl/a.13339

Atasoy, S., Vohryzek, J., Deco, G., Carhart-Harris, R. L., & Kringelbach, M. L. (2018). Common neural signatures of psychedelics: frequency-specific energy changes and repertoire expansion revealed using connectome-harmonic decomposition. Progress in Brain Research, 242, 97-120. https://doi.org/10.1016/bs.pbr.2018.08.009

Barker, S. A. (2018). N, N-Dimethyltryptamine (DMT), an endogenous hallucinogen: Past, present, and future research to determine its role and function. Frontiers in neuroscience, 12, 536. https://doi.org/10.3389/fnins.2018.00536

Barker, S. A. (2022). Administration of N, N-dimethyltryptamine (DMT) in psychedelic therapeutics and research and the study of endogenous DMT. Psychopharmacology, 239(6), 1749-1763. https://doi.org/10.1007/s00213-022-06065-0

Blair, J. B., Kurrasch-Orbaugh, D., Marona-Lewicka, D., Cumbay, M. G., Watts, V. J., Barker, E. L., & Nichols, D. E. (2000). Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. Journal of medicinal chemistry, 43(24), 4701-4710. https://doi.org/10.1021/jm000339w

Branchi, I. (2011). The double-edged sword of neural plasticity: increasing serotonin levels leads to both greater vulnerability to depression and improved capacity to recover. Psychoneuroendocrinology, 36(3), 339-351. https://doi.org/10.1016/j.psyneuen.2010.08.011

Bradshaw, C. M., Roberts, M. H. T., & Szabadi, E. (1971). Effect of mescaline on single cortical neurones. British Journal of Pharmacology, 43(4), 871. https://doi.org/10.1111/j.1476-5381.1971.tb07225.x

Bouso, J. C., Pedrero‐Pérez, E. J., Gandy, S., & Alcázar‐Córcoles, M. Á. (2016). Measuring the subjective: revisiting the psychometric properties of three rating scales that assess the acute effects of hallucinogens. Human Psychopharmacology: Clinical and Experimental, 31(5), 356-372. https://doi.org/10.1002/hup.2545

Carbonaro, T. M., & Gatch, M. B. (2016). Neuropharmacology of N, N-dimethyltryptamine. Brain research bulletin, 126, 74-88. https://doi.org/10.1016/j.brainresbull.2016.04.016

Carhart-Harris, R. L., & Friston, K. J. (2010). The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain: a journal of neurology, 133(4), 1265-1283. https://doi.org/10.1093/brain/awq010

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacological reviews, 71(3), 316-344. https://doi.org/10.1124/pr.118.017160

Carhart-Harris, R. L., Leech, R., Erritzoe, D., Williams, T. M., Stone, J. M., Evans, J., … & Nutt, D. J. (2013). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophrenia bulletin, 39(6), 1343-1351. https://doi.org/10.1124/pr.118.017160

Carhart-Harris, R. L., & Nutt, D. J. (2010). User perceptions of the benefits and harms of hallucinogenic drug use: A web-based questionnaire study. Journal of substance use, 15(4), 283-300. https://doi.org/10.3109/14659890903271624

Carhart-Harris, R. & Nutt, D. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 1091–1120. https://doi.org/10.1177/0269881117725915

Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., … & Nutt, D. J. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Scientific reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-13282-7

Deakin, J. F. W. (2013). The origins of ‘5-HT and mechanisms of defence’by Deakin and Graeff: a personal perspective. Journal of psychopharmacology, 27(12), 1084-1089. https://doi.org/10.1177/0269881113503508

Dinis-Oliveira, R. J., Pereira, C. L., & da Silva, D. D. (2019). Pharmacokinetic and pharmacodynamic aspects of peyote and mescaline: clinical and forensic repercussions. Current molecular pharmacology, 12(3), 184. https://doi.org/10.2174/1874467211666181010154139

Ermakova, A. O., Dunbar, F., Rucker, J., & Johnson, M. W. (2022). A narrative synthesis of research with 5-MeO-DMT. Journal of Psychopharmacology, 36(3), 273-294. https://doi.org/10.1177/02698811211050543

Fantegrossi, W. E., Murnane, K. S., & Reissig, C. J. (2008). The behavioral pharmacology of hallucinogens. Biochemical pharmacology, 75(1), 17-33. https://doi.org/10.1016/j.bcp.2007.07.018

Golan, D. E., Tashjian, A. H., & Armstrong, E. J. (Eds.). (2011). Principles of pharmacology: the pathophysiologic basis of drug therapy. Lippincott Williams & Wilkins.

Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, et al. (2005): Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): A double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 38:301–311. https://doi.org/10.1055/s-2005-916185

Griffiths RR, Richards WA, McCann U, Jesse R (2006): Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berl) 187:268–283. https://doi.org/10.1007/s00213-006-0457-5

Halberstadt, A. L., & Geyer, M. A. (2011). Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 61(3), 364-381. https://doi.org/10.1016/j.neuropharm.2011.01.017

Halberstadt, A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behavioural brain research, 277, 99-120. https://doi.org/10.1016/j.bbr.2014.07.016

Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J., & Brandt, S. D. (2020). Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 167, 107933. https://doi.org/10.1016/j.neuropharm.2019.107933

Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX (2004): Acute psychological and physiological effects of psilocybin in healthy humans: A double-blind, placebo-controlled dose-effect study. Psychopharmacology 172:145–156. https://doi.org/10.1007/s00213-003-1640-6

Hintzen, A., & Passie, T. (2010). The pharmacology of LSD. OUP Oxford.

Hill, S. L., & Thomas, S. H. (2011). Clinical toxicology of newer recreational drugs. Clinical toxicology, 49(8), 705-719. https://doi.org/10.3109/15563650.2011.615318

Hofmann, A., Heim, R., Brack, A., Kobel, H., Frey, A., Ott, H., ... & Troxler, F. (1959). Psilocybin und Psilocin, zwei psycahotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helvetica Chimica Acta, 42(5), 1557-1572. https://doi.org/10.1002/hlca.19590420518

Hysek CM, Simmler LD, Schillinger N, Meyer N, Schmid Y, Donzelli M, et al. (2014): Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone and in combination. Int J Neuropsychopharmacol 17:371–381. , https://doi.org/10.1017/S1461145713001132

Jakab RL, Goldman-Rakic PS (1998): 5-Hydroxytryptamine2A serotonin receptors in the primate cerbral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci 95:735–740 https://doi.org/10.1073/pnas.95.2.735

Joyce, I. (2017). A comparative literature survey of psilocybin and LSD-25 metabolism. https://scholarworks.calstate.edu/concern/theses/m039k698q

Kalant, H. (2001). The pharmacology and toxicology of “ecstasy”(MDMA) and related drugs. Cmaj, 165(7), 917-928. https://www.cmaj.ca/content/165/7/917

Kotz, J. C., Treichel, P. M., Townsend, J., & Treichel, D. (2014). Chemistry & chemical reactivity. Cengage Learning.

Kometer, M., Pokorny, T., Seifritz, E., & Volleinweider, F. X. (2015). Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology, 232, 3663-3676. https://doi.org/10.1007/s00213-015-4026-7

Kometer, M., Schmidt, A., Jäncke, L., & Vollenweider, F. X. (2013). Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. Journal of Neuroscience, 33(25), 10544-10551. https://doi.org/10.1523/JNEUROSCI.3007-12.2013

López-Giménez JF, Mengod G, Palacios JM, Vilaro MT (1997): Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H] MDL 100,907. Naunyn- Schmiedeberg’s Arch Pharmacol 356:446–454 https://doi.org/10.1007/pl00005075

López-Giménez, J. F., & González-Maeso, J. (2018). Hallucinogens and serotonin 5-HT 2A receptor-mediated signaling pathways. Behavioral Neurobiology of Psychedelic Drugs, 45-73. https://link.springer.com/chapter/10.1007/7854_2017_478

Lord, L. D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte, R., & Cabral, J. (2019). Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. NeuroImage, 199, 127-142. https://doi.org/10.1016/j.neuroimage.2019.05.060

Lowe, H., Toyang, N., Steele, B., Grant, J., Ali, A., Gordon, L., & Ngwa, W. (2022). Psychedelics: alternative and potential therapeutic options for treating mood and anxiety disorders. Molecules, 27(8), 2520. https://doi.org/10.3390/molecules27082520

Martin, D. A., & Nichols, C. D. (2018). The effects of hallucinogens on gene expression. Behavioral Neurobiology of Psychedelic Drugs, 137-158. https://link.springer.com/chapter/10.1007/7854_2017_479

McKenna, D. J., Repke, D. B., Lo, L., & Peroutka, S. J. (1990). Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 29(3), 193-198. https://doi.org/10.1016/0028-3908(90)90001-8

McKenna, D., & Riba, J. (2018). New world tryptamine hallucinogens and the neuroscience of ayahuasca. Behavioral Neurobiology of Psychedelic Drugs, 283-311. https://link.springer.com/chapter/10.1007/7854_2016_472

McMurry, J. E. (2014). Organic chemistry with biological applications. Cengage Learning.

Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res. 2014 Nov 21;14:579. https://doi.org/10.1186/s12913-014-0579-0

Milliere, R. (2017). Looking for the self: phenomenology, neurophysiology and philosophical significance of drug-induced ego dissolution. Frontiers in human neuroscience, 245. https://doi.org/10.3389/fnhum.2017.00245

Miyazaki, K., Miyazaki, K. W., & Doya, K. (2012). The role of serotonin in the regulation of patience and impulsivity. Molecular neurobiology, 45, 213-224.

Moreno, J. L., Holloway, T., Albizu, L., Sealfon, S. C. & González-Maeso, J. (2011). Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neuroscience Letters, 493(3), 76- 79. https://doi.org/10.1016/j.neulet.2011.01.046

Müller, F., Lenz, C., Dolder, P., Lang, U., Schmidt, A., Liechti, M. & Borgwardt, S. (2017). Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatrica Scandinavica, 136(6), 648–657. https://doi.org/10.1111/acps.12818

Müller, F., Liechti, M. E., Lang, U. E., & Borgwardt, S. (2018). Advances and challenges in neuroimaging studies on the effects of serotonergic hallucinogens: Contributions of the resting brain. Progress in brain research, 242, 159-177. https://doi.org/10.1016/bs.pbr.2018.08.004

Nichols, D. E. (2004). Hallucinogens. Pharmacology & Therapeutics, 101(2), 131-181. https://doi.org/10.1016/j.pharmthera.2003.11.002

Nichols D. E. (2016). Psychedelics. Pharm. Rev. 68, 264–355. 10.1124/pr.115.011478 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Nichols, D. E. (2018). Chemistry and structure–activity relationships of psychedelics. Behavioral Neurobiology of Psychedelic Drugs, 1-43.

Passie, T., Seifert, J., Schneider, U., & Emrich, H. M. (2002). The pharmacology of psilocybin. Addiction biology, 7(4), 357–364. https://doi.org/10.1080/1355621021000005937

Passie, T., Halpern, J. H., Stichtenoth, D. O., Emrich, H. M., & Hintzen, A. (2008). The pharmacology of lysergic acid diethylamide: a review. CNS neuroscience & therapeutics, 14(4), 295-314. https://doi.org/10.1111/j.1755-5949.2008.00059.x

Poldrack, R. A., et al. (2017). "Scanning the horizon: towards transparent and reproducible neuroimaging research." Nature Reviews Neuroscience 18(2): 115-126. https://doi.org/10.1038/nrn.2016.167

Preller, K. H., Pokorny, T., Hock, A., Kraehenmann, R., Stämpfli, P., Seifritz, E., ... & Vollenweider, F. X. (2016). Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proceedings of the National Academy of Sciences, 113(18), 5119-5124. https://doi.org/10.1073/pnas.1524187113

Preller, K. H., Herdener, M., Pokorny, T., Planzer, A., Kraehenmann, R., Stämpfli, P., & Vollenweider, F. X. (2017). The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Current Biology, 27(3), 451-457. https://doi.org/10.1016/j.cub.2016.12.030

Preller, K. H., Schilbach, L., Pokorny, T., Flemming, J., Seifritz, E. & Vollenweider, F. X. (2018). Role of the 5-HT2A receptor in self- and other-initiated social interaction in Lysergic Acid Diethylamide-induced states: A pharmacological fMRI study. Journal of Neuroscience, 38(14), 3603-3611. https://doi.org/10.1523/JNEUROSCI.1939-17.2018

Riba, J., Rodríguez-Fornells, A., Urbano, G., Morte, A., Antonijoan, R., Montero, M., Callaway, J. C., & Barbanoj, M. J. (2001). Subjective effects and tolerability of the South American psychoactive beverage Ayahuasca in healthy volunteers. Psychopharmacology, 154(1), 85–95. https://doi.org/10.1007/s002130000606

Roth, B. L. (Ed.). (2008). The serotonin receptors: from molecular pharmacology to human therapeutics. Springer Science & Business Media.

Rang, R., Ritter, J. M., Flower, R. J., & Henderson, G. (2015). Rang & dale farmacologia. Elsevier Brasil.

Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K., & Muthukumaraswamy, S. D. (2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Scientific reports, 7(1), 46421. https://doi.org/10.1038/srep46421

Shipp, S. (2016). Neural elements for predictive coding. Frontiers in psychology, 7, 1792. https://doi.org/10.3389/fpsyg.2016.01792

Schmid, Y., Enzler, F., Gasser, P., Grouzmann, E., Preller, K. H., Vollenweider, F. X., & Liechti, M. E. (2015). Acute effects of lysergic acid diethylamide in healthy subjects. Biological psychiatry, 78(8), 544-553. https://doi.org/10.1016/j.biopsych.2014.11.015

Schmid Y, Hysek CM, Simmler LD, Crockett MJ, Quednow BB, Liechti ME (2014): Differential effects of MDMA and methylphenidate on social cognition. J Psychopharmacol 28:847–856. https://doi.org/10.1177/0269881114542454

Shulgin A. T. (1973): Mescaline: The chemistry and pharmacology of its analogs. Lloydia 36:46–58

Schultes, R. E., & Hofmann, A. (1980). The Botany and Chemistry of Hallucinogens, 2nd. Edition. Charles C. Thomas, Publishers, Springfield, Ill.

Smigielski, L., Scheidegger, M., Kometer, M. & Vollenweider, F. X. (2019). Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. NeuroImage, 196, 207–215. https://doi.org/10.1016/j.neuroimage.2019.04.009

Snyder, S. H., & Merril, C. R. (1965). A relationship between the hallucinogenic activity of drugs and their electronic configuration. Proceedings of the National Academy of Sciences, 54(1), 258-266. https://doi.org/10.1073/pnas.54.1.258

Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994): Doseresponse study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51:98–108. https://doi.org/10.1001/archpsyc.1994.03950020022002

Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. C. (Eds.). (2012). Fundamental neuroscience. Academic press.

Swanson, L. R. (2018). Unifying theories of psychedelic drug effects. Frontiers in pharmacology, 172. https://doi.org/10.3389/fphar.2018.00172

Szara, S. (1967). Hallucinogenic amines and schizophrenia (with a brief addendum on N-dimethyltryptamine). In Amines and Schizophrenia (pp. 181-197). Pergamon. https://doi.org/10.1016/B978-0-08-012039-3.50018-X

Titeler M, Lyon RA, Glennon RA (1988): Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94:213–216 https://doi.org/10.1007/BF00176847

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., ... & Clifford, T. Ö Tunçalp, Straus SE. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine, 169(7), 467-473. https://doi.org/10.7326/M18-0850

Turner, W. J., & Merlis, S. (1959). Effect of some indolealkylamines on man. AMA Archives of Neurology & Psychiatry, 81(1), 121-129. https://doi.org/10.1001/archneurpsyc.1959.02340130141020

Tylš, F., Páleníček, T., & Horáček, J. (2014). Psilocybin–summary of knowledge and new perspectives. European Neuropsychopharmacology, 24(3), 342-356. https://doi.org/10.1016/j.euroneuro.2013.12.006

Vollenweider, F. X., & Kometer, M. (2010). The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nature Reviews Neuroscience, 11(9), 642-651. https://doi.org/10.1038/nrn2884

Wittmann, M., Carter, O., Hasler, F., Cahn, B. R., Grimberg, U., Spring, P., … & Vollenweider, F. X. (2007). Effects of psilocybin on time perception and temporal control of behaviour in humans. Journal of Psychopharmacology, 21(1), 50-64. https://doi.org/10.1177/0269881106065859

Wolbach, A. B., Miner, E. J., & Isbell, H. (1962). Comparison of psilocin with psilocybin, mescaline and LSD-25. Psychopharmacologia, 3, 219-223. https://doi.org/10.1007/BF00412109

Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., & Yao, S. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biological psychiatry, 71(7), 611-617. https://doi.org/10.1016/j.biopsych.2011.10.035

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.