Conteúdo do artigo principal

Autores

Recentemente, o uso de técnicas de machine learning (ML) em diferentes disciplinas científicas experimentou um aumento sem precedentes. A área das finanças não tem sido exceção. Nos últimos anos, vários artigos foram publicados usando técnicas de ML. Entretanto, um dos temas com menor número de artigos desenvolvidos nesse contexto é a volatilidade. Apesar do exposto, os dados analisados neste artigo sugerem mudanças nesse sentido. Dados obtidos da base de dados Web of Science mostram que entre 2001 e 2010 33 artigos associados a este tópico foram publicados. Surpreendentemente, entre 2019 e 2023, foram publicados 189 manuscritos relacionados a esse tipo de modelo. O objetivo deste artigo é revisar os trabalhos relacionados a aplicações de ml no tópico de volatilidade. Para isso, propõe-se uma classificação das principais propostas sobre este assunto seguindo uma metodologia narrativa, acompanhada de uma análise estatística e bibliométrica em que são utilizadas técnicas inovadoras como o K-means. Os resultados são sugestivos. Embora a maioria dos artigos se concentre na previsão de volatilidade por meio de redes neurais e support vector machines, há uma ausência de artigos relacionados à transmissão de volatilidade, calibração de superfície de volatilidade e finanças corporativas. Além disso, os resultados obtidos indicam que existem lacunas na produção de artigos relacionados a esses temas em periódicos especializados em finanças e economia.

Molina Muñoz, J. E., & Castañeda, R. (2023). O uso de machine learning na volatilidade: uma revisão usando K-means. Revista Universidad Y Empresa, 25(44), 1–28. https://doi.org/10.12804/revistas.urosario.edu.co/empresa/a.11969

Al-Fattah, S. M. (2019). Artificial intelligence approach for modeling and forecasting oilprice

volatility. spe Reservoir Evaluation & Engineering, 22(03), 817-826. https://doi.org/10.2118/195584-PA

Amornwattana, S., Enke, D., & Dagli, C. H. (2007). A hybrid option pricing model using a neural network for estimating volatility. International Journal of General Systems, 36(5), 558-573. https://doi.org/10.1080/03081070701210303

Aria, M. & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Arvin, R., Khattak, A. J., & Qi, H. (2021). Safety critical event prediction through unified analysis

of driver and vehicle volatilities: Application of deep learning methods. Accident Analysis & Prevention, 151, 105949. https://doi.org/10.1016/j.aap.2020.105949

Baffour, A. A., Feng, J., & Taylor, E. K. (2019). A hybrid artificial neural network-GJR modeling approach to forecasting currency exchange rate volatility. Neurocomputing, 365, 285-301.

https://doi.org/10.1016/j.neucom.2019.07.088

Bekiros, S. D., & Georgoutsos, D. A. (2008). Direction‐of‐change forecasting using a volatility‐

based recurrent neural network. Journal of Forecasting, 27(5), 407-417. https://doi.org/10.1002/for.1063

Bildirici, M., & Ersin, Ö. (2015). Forecasting volatility in oil prices with a class of nonlinear volatility models: smooth transition rbf and mlp neural networks augmented garch approach.

Petroleum Science, 12, 534-552. https://doi.org/10.1007/s12182-015-0035-8

Bouteska, A., Hajek, P., Fisher, B., & Abedin, M. Z. (2023). Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network. Research in International Business and Finance, 64, 101863. https://doi.org/10.1016/j.ribaf.

101863

Bucci, A. (2020). Realized volatility forecasting with neural networks. Journal of Financial Econometrics, 18(3), 502-531. https://doi.org/10.1093/jjfinec/nbaa008

Cai, X., Lai, G., & Lin, X. (2013). Forecasting large scale conditional volatility and covariance using neural network on gpu. The Journal of Supercomputing, 63, 490-507. https://doi.org/10.1007/s11227-012-0827-1

Calôba, L. O. M., Calôba, L. P., & Contador, C. R. (2001). Delta–Neutral Volatility Trading using Neural Networks F3. International Journal of Engineering Intelligent Systems, 9(4), 243-249. https://lps.ufrj.br/~caloba/Papers%20meus/forecasting_market_volatility.pdf

Cao, J., Chen, J., & Hull, J. (2020). A neural network approach to understanding implied volatility

movements. Quantitative Finance, 20(9), 1405-1413. https://doi.org/10.1080/14697688.2020.1750679

Chen, S., Härdle, W. K., & Jeong, K. (2010). Forecasting volatility with support vector machinebased garch model. Journal of Forecasting, 29(4), 406-433. https://doi.org/10.1002/for.1134

Chkili, W., & Hamdi, M. (2021). An artificial neural network augmented garch model for Islamic

stock market volatility: Do asymmetry and long memory matter? International Journal of Islamic and Middle Eastern Finance and Management, 14(5), 853-873. https://doi.org/10.1108/IMEFM-05-2019-0204

Chung, S. S., & Zhang, S. (2017). Volatility estimation using support vector machine: Applications to major foreign exchange rates. Electronic Journal of Applied Statistical Analysis, 10(2), 499-511. http://siba-ese.unisalento.it/index.php/ejasa/article/view/17080/15510

Dash, G. H., & Kajiji, N. (2008). Engineering a generalized neural network mapping of volatility

spillovers in European government bond markets. In C. Zopounidis, M. Doumpos, & P. M. Pardalos (Eds.), Handbook of Financial Engineering (pp. 201-230). Springer. https://

doi.org/10.1007/978-0-387-76682-9_7

Di-Giorgi, G., Salas, R., Avaria, R., Ubal, C., Rosas, H., & Torres, R. (2023). Volatility forecasting

using deep recurrent neural networks as garch models. Computational Statistics, 1-27.

https://doi.org/10.1007/s00180-023-01349-1

Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in finance: From Theory to

practice. Springer International Publishing. https://doi.org/10.1007/978-3-030-41068-1

Enke, D., & Thawornwong, S. (2005). The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications, 29(4), 927-940. https://doi.org/10.1016/j.eswa.2005.06.024

Ewees, A. A., Abd Elaziz, M., Alameer, Z., Ye, H., & Jianhua, Z. (2020). Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility. Resources Policy, 65, 101555. https://doi.org/10.1016/j.resourpol.

101555

Fadda, S. (2020). Pricing options with dual volatility input to modular neural networks. Borsa

Istanbul Review, 20(3), 269-278. https://doi.org/10.1016/j.bir.2020.03.002

Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230-235.

https://doi.org/10.1179/2047480615Z.000000000329

Fisher, I. E., Garnsey, M. R., & Hughes, M. E. (2016). Natural language processing in accounting,

auditing and finance: A synthesis of the literature with a roadmap for future research.

Intelligent Systems in Accounting, Finance and Management, 23(3), 157-214. https://doi.org/10.1002/isaf.1386

Fong, B., Fong, A. C. M., Hong, G. Y., & Wong, L. (2005, December). An empirical study of volatility predictions: Stock market analysis using neural networks. In X. Deng & Y. Ye (Eds.), Internet and Network Economics. WINE 2005. Lecture Notes in Computer Science

(pp. 473-480). Springer. https://doi.org/10.1007/11600930_47

Ge, H., Xu, G., Huang, J., & Ma, X. (2019). A mine main fans switchover system with lower air flow volatility based on improved particle swarm optimization algorithm. Advances in Mechanical Engineering, 11(3). https://doi.org/10.1177/1687814019829281

Ghoddusi, H., Creamer, G. G., & Rafizadeh, N. (2019). Machine learning in energy economics

and finance: A review. Energy Economics, 81, 709-727. https://doi.org/10.1016/j.eneco.

05.006

Gong, X. L., Liu, X. H., Xiong, X., & Zhuang, X. T. (2019). Forecasting stock volatility process

using improved least square support vector machine approach. Soft Computing, 23, 11867-

https://doi.org/10.1007/s00500-018-03743-0

Gupta, R., Nel, J., & Pierdzioch, C. (2021). Investor confidence and forecastability of us stock

market realized volatility: Evidence from machine learning. Journal of Behavioral Finance, 24(1), 111-122. https://doi.org/10.1080/15427560.2021.1949719

Hamid, S. A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index futures prices. Journal of Business Research, 57(10), 1116-1125. https://doi.org/10.1016/S0148-2963(03)00043-2

Hein, P. H., Kames, E., Chen, C., & Morkos, B. (2021). Employing machine learning techniques to assess requirement change volatility. Research in Engineering Design, 32, 245-269.

https://doi.org/10.1007/s00163-020-00353-6

Horvath, B., Muguruza, A., & Tomas, M. (2021). Deep learning volatility: a deep neural network

perspective on pricing and calibration in (rough) volatility models. Quantitative Finance, 21(1), 11-27. https://doi.org/10.1080/14697688.2020.1817974

Hu, Y., Ni, J., & Wen, L. (2020). A hybrid deep learning approach by integrating lstm-ANN networks with garch model for copper price volatility prediction. Physica A: Statistical Mechanics and its Applications, 557, 124907. https://doi.org/10.1016/j.physa.2020.124907

Hung, J. C. (2011). Adaptive Fuzzy-garch model applied to forecasting the volatility of stock

markets using particle swarm optimization. Information Sciences, 181(20), 4673-4683.

https://doi.org/10.1016/j.ins.2011.02.027

Hung, J. C. (2015). Robust Kalman filter based on a fuzzy garch model to forecast volatility using particle swarm optimization. Soft Computing, 19, 2861-2869. https://doi.org/10.1007/s00500-014-1447-x

Jang, Y., Son, J., & Yi, J. S. (2021). Classifying the level of bid price volatility based on machine

learning with parameters from bid documents as risk factors. Sustainability, 13(7), 3886. https://doi.org/10.3390/su13073886

Jerbi, Y., & Chaabene, S. (2020). European call price modelling using neural networks in considering volatility as stochastic with comparison to the Heston model. Journal of Statistical

Computation and Simulation, 90(10), 1793-1810. https://doi.org/10.1080/00949655.2020.1747463

Jia, F., & Yang, B. (2021). Forecasting volatility of stock index: Deep learning model with likelihood-based loss function. Complexity. https://doi.org/10.1155/2021/5511802

Jobejarkol, M. P., Badamchizadeh, A., & Morales, M. (2018). Implied volatility parameterization

based on a machine learning polynomial approach. Intelligent Data Analysis, 22(5), 1127-1141. https://doi.org/10.3233/IDA-173600

Jung, G., & Choi, S. Y. (2021). Forecasting foreign exchange volatility using deep learning autoencoder-lstm techniques. Complexity. https://doi.org/10.1155/2021/6647534

Kakade, K., Mishra, A. K., Ghate, K., & Gupta, S. (2022). Forecasting commodity market returns

volatility: A hybrid ensemble learning garch‐lstm based approach. Intelligent Systems in Accounting, Finance and Management, 29(2), 103-117. https://doi.org/10.1002/isaf.1515

Kamdem, J. S., Essomba, R. B., & Berinyuy, J. N. (2020). Deep learning models for forecasting

and analyzing the implications of covid-19 spread on some commodities markets volatilities.

Chaos, Solitons & Fractals, 140, 110215. https://doi.org/10.1016/j.chaos.2020.110215

Khashman, A., & Nwulu, N. I. (2011) Support vector machines versus back propagation algorithm for oil price prediction. In D. Liu, H. Zhang, M. Polycarpou, C. Alippi, & H. He, (Eds), Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6677 (pp. 530-538) Springer. https://doi.org/10.1007/978-3-642-21111-9_60

Kaushik, R., Jain, S., Jain, S., & Dash, T. (2019). Performance evaluation of deep neural networks

for forecasting time-series with multiple structural breaks and high volatility. caai Transactions on Intelligence Technology, 6(3), 265-280. https://doi.org/10.1049/cit2.12002

Kim, J., & Baek, C. (2018). Neural network heterogeneous autoregressive models for realized

volatility. Communications for Statistical Applications and Methods, 25(6), 659-671.

https://doi.org/10.29220/CSAM.2018.25.6.659

Kim, Y., & Enke, D. (2018). A dynamic target volatility strategy for asset allocation using artificial neural networks. The Engineering Economist, 63(4), 273-290. https://doi.org/10.1080/0013791X.2018.1461287

Kristjanpoller, W., Fadic, A., & Minutolo, M. C. (2014). Volatility forecast using hybrid neural

network models. Expert Systems with Applications, 41(5), 2437-2442. https://doi.org/10.1016/j.eswa.2013.09.043

Kristjanpoller, W., & Minutolo, M. C. (2015). Gold price volatility: A forecasting approach using

the artificial neural network–garch model. Expert Systems with Applications, 42(20), 7245-7251. https://doi.org/10.1016/j.eswa.2015.04.058

Kristjanpoller, W., & Minutolo, M. C. (2016). Forecasting volatility of oil price using an artificial

neural network-garch model. Expert Systems with Applications, 65, 233-241. https://doi.org/10.1016/j.eswa.2016.08.045

Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility forecasting framework integrating garch, artificial neural network, technical analysis and principal components analysis. Expert Systems with Applications, 109, 1-11. https://doi.org/10.1016/j.eswa.2018.05.011

Kwak, S., Hwang, Y., Choi, Y., Wang, J., Kim, S., & Kim, J. (2022). Reconstructing the local volatility surface from market option prices. Mathematics, 10(14), 2537. https://doi.org/10.3390/math10142537

Kyoung-Sook, M. O. O. N., & Hongjoong, K. I. M. (2019). Performance of deep learning in prediction of stock market volatility. Economic Computation & Economic Cybernetics Studies

& Research, 53(2). https://doi.org/10.24818/18423264/53.2.19.05

Lantz, B. (2019). Machine learning with R: expert techniques for predictive modeling. Packt

publishing ltd.

Lei, B., Liu, Z., & Song, Y. (2021a). On stock volatility forecasting based on text mining and

deep learning under high frequency data. Journal of Forecasting, 40(8), 1596-1610. https://doi.org/10.1002/for.2794

Lei, B., Zhang, B., & Song, Y. (2021b). Volatility forecasting for high-frequency financial data

based on web search index and deep learning model. Mathematics, 9(4), 320. https://doi.org/10.3390/math9040320

Li, Y., Jiang, S., Li, X., & Wang, S. (2021). The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach. Energy Economics, 95, 105140. https://doi.org/10.1016/j.eneco.2021.105140

Liao, R., Yamaka, W., & Sriboonchitta, S. (2020). Exchange rate volatility forecasting by hybrid

neural network Markov switching beta-t-egarch. ieee Access, 8, 207563-207574. https://doi.org/10.1109/ACCESS.2020.3038564

Liu, Y. (2019). Novel volatility forecasting using deep learning–long short term memory recurrent neural networks. Expert Systems with Applications, 132, 99-109. https://doi.org/10.1016/j.eswa.2019.04.038

Liu, X., & Fu, H. (2016). Volatility forecasting for interbank offered rate using grey extreme

learning machine: The case of China. Chaos, Solitons & Fractals, 89, 249-254. https://doi.org/10.1016/j.chaos.2015.11.033

Liu, F. Y., & Liu, F. X. (2006). Currency options volatility forecasting with shift-invariant wavelet

transform and neural networks. In I. King, J. Wang, L. W. Chan, D. Wang (Eds.), Neural Information Processing. iconip 2006. Lecture Notes in Computer Science, vol 4234 (pp.461-468). Springer. https://doi.org/10.1007/11893295_51

Liu, S., Oosterlee, C. W., & Bohte, S. M. (2019). Pricing options and computing implied volatilities using neural networks. Risks, 7(1), 16. https://doi.org/10.3390/risks7010016

Medeiros, M. C., McAleer, M., Slottje, D., Ramos, V., & Rey-Maquieira, J. (2008). An alternative

approach to estimating demand: Neural network regression with conditional volatility for

high frequency air passenger arrivals. Journal of Econometrics, 147(2), 372-383. https://doi.org/10.1016/j.jeconom.2008.09.018

Mo, H., & Wang, J. (2013). Volatility degree forecasting of stock market by stochastic time strength neural network. Mathematical Problems in Engineering. https://doi.org/10.1155/2013/436795

Othman, A. H. A., Kassim, S., Rosman, R. B., & Redzuan, N. H. B. (2020). Prediction accuracy

improvement for Bitcoin market prices based on symmetric volatility information using

artificial neural network approach. Journal of Revenue and Pricing Management, 19, 314-330. https://doi.org/10.1057/s41272-020-00229-3

Ou, P., & Wang, H. (2012). Applications of Support Vector Machine in modeling and forecasting

stock market volatility. International Information Institute (Tokyo). Information, 15(8), 3365-3376.

Ou, P., & Wang, H. (2014). Volatility modelling and prediction by hybrid support vector regression with chaotic genetic algorithms. The International Arab Journal of Information

Technology, 11(3), 287-292. https://iajit.org/PDF/vol.11,no.3/4788.pdf

Patnaik, S. (2020). Applied machine learning and management of volatility, uncertainty, complexity & ambiguity (vuca). Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 9(2), 1409-1416. https://doi.org/10.3233/JIFS-179915

Peng, J., & Liu, Z. (2011). p th Moment stability of stochastic neural networks with Markov volatilities. Neural Computing and Applications, 20, 543-547. https://doi.org/10.1007/s00521-011-0542-5

Petneházi, G., & Gáll, J. (2019). Exploring the predictability of range‐based volatility estimators

using recurrent neural networks. Intelligent Systems in Accounting, Finance and Management, 26(3), 109-116. https://doi.org/10.1002/isaf.1455

Pradeepkumar, D., & Ravi, V. (2017). Forecasting financial time series volatility using particle

swarm optimization trained quantile regression neural network. Applied Soft Computing, 58, 35-52. https://doi.org/10.1016/j.asoc.2017.04.014

Qu, H., & Ji, P. (2014). Adaptive heterogeneous autoregressive models of realized volatility based on a genetic algorithm. Abstract and Applied Analysis. https://doi.org/10.1155/2014/943041

Qu, H., & Ji, P. (2016). Modeling realized volatility dynamics with a genetic algorithm. Journal

of Forecasting, 35(5), 434-444. https://doi.org/10.1002/for.2386

Petrozziello, A., Troiano, L., Serra, A., Jordanov, I., Storti, G., Tagliaferri, R., & La Rocca, M. (2022). Deep learning for volatility forecasting in asset management. Soft Computing, 26, 8553-8574. https://doi.org/10.1007/s00500-022-07161-1

Rahman, Q. A., Janmohamed, T., Pirbaglou, M., Clarke, H., Ritvo, P., Heffernan, J. M., & Katz,

J. (2018). Defining and predicting pain volatility in users of the Manage My Pain app: Analysis using data mining and machine learning methods. Journal of Medical Internet Research, 20(11), e12001. https://doi.org/10.2196/12001

Ramos-Pérez, E., Alonso-González, P. J., & Núñez-Velázquez, J. J. (2019). Forecasting volatility

with a stacked model based on a hybridized Artificial Neural Network. Expert Systems with Applications, 129, 1-9. https://doi.org/10.1016/j.eswa.2019.03.046

Santamaría-Bonfil, G., Frausto-Solís, J., & Vázquez-Rodarte, I. (2015). Volatility forecasting using support vector regression and a hybrid genetic algorithm. Computational Economics,

, 111-133. https://doi.org/10.1007/s10614-013-9411-x

Seo, M., & Kim, G. (2020). Hybrid forecasting models based on the neural networks for the volatility of Bitcoin. Applied Sciences, 10(14), 4768. https://doi.org/10.3390/app10144768

Sermpinis, G., Laws, J., & Dunis, C. L. (2013). Modelling and trading the realised volatility of the FTSE100 futures with higher order neural networks. The European Journal of Finance, 19(3), 165-179. https://doi.org/10.1080/1351847X.2011.606990

Slim, C. (2004, May). Forecasting the volatility of stock index returns: A stochastic neural network approach. In A. Laganá, M. L. Gavrilova, V. Kumar, Y. Mun, C. J. K. Tan, & O. Gervasi (Eds.), Computational Science and Its Applications – iccsa 2004. iccsa 2004. Lecture Notes in Computer Science, vol 3045 (pp. 935-944). Springer. https://doi.org/10.1007/978-3-540-24767-8_98

Stone, H. (2020). Calibrating rough volatility models: a convolutional neural network approach.

Quantitative Finance, 20(3), 379-392. https://doi.org/10.1080/14697688.2019.1654126

Tang, L. B., Tang, L. X., & Sheng, H. Y. (2009). Forecasting volatility based on wavelet support

vector machine. Expert Systems with Applications, 36(2-2), 2901-2909. https://doi.org/10.1016/j.eswa.2008.01.047

Tino, P., Schittenkopf, C., & Dorffner, G. (2001). Financial volatility trading using recurrent neural networks. ieee Transactions on Neural Networks, 12(4), 865-874. https://doi.org/10.1109/72.935096

Tseng, C. H., Cheng, S. T., Wang, Y. H., & Peng, J. T. (2008). Artificial neural network model

of the hybrid egarch volatility of the Taiwan stock index option prices. Physica A: Statistical Mechanics and its Applications, 387(13), 3192-3200. https://doi.org/10.1016/j.physa.2008.01.074

Tung, W. L., & Quek, C. (2011). Financial volatility trading using a self-organising neural-fuzzy

semantic network and option straddle-based approach. Expert Systems with Applications,

(5), 4668-4688. https://doi.org/10.1016/j.eswa.2010.07.116

Vortelinos, D. I. (2017). Forecasting realized volatility: har against Principal Components

Combining, neural networks and garch. Research in International Business and Finance, 39, 824-839. https://doi.org/10.1016/j.ribaf.2015.01.004

Vrontos, S. D., Galakis, J., & Vrontos, I. D. (2021). Implied volatility directional forecasting: a

machine learning approach. Quantitative Finance, 21(10), 1687-1706. https://doi.org/10.1080/14697688.2021.1905869

Wang, A., & Liu, Y. (2020). Intelligent financial management of company based on neural network and fuzzy volatility evaluation. Journal of Intelligent & Fuzzy Systems, 38(6), 7215-

https://doi.org/10.3233/JIFS-179798

Wang, B., Huang, H., & Wang, X. (2013). A support vector machine based msm model for financial short-term volatility forecasting. Neural Computing and Applications, 22, 21-28.

https://doi.org/10.1007/s00521-011-0742-z

Wang, C. P., Lin, S. H., Huang, H. H., & Wu, P. C. (2012). Using neural network for forecasting

txo price under different volatility models. Expert Systems with Applications, 39(5), 5025-

https://doi.org/10.1016/j.eswa.2011.11.038

Wang, F., Tang, S., & Li, M. (2021). Advantages of Combining Factorization Machine with Elman

Neural Network for Volatility Forecasting of Stock Market. Complexity, 1-12. https://doi.org/10.1155/2021/6641298

Wang, Y., Liu, H., Guo, Q., Xie, S., & Zhang, X. (2019). Stock volatility prediction by hybrid neural

network. ieee Access, 7, 154524-154534. https://doi.org/10.1109/ACCESS.2019.2949074

Weerasingha, J. P., Bandara, Y. M., & Edirisinghe, P. M. (2021). Determining the invoicing dates

for raw material order and finish product dispatch using neural networks under exchange rate volatility. International Journal of Logistics Research and Applications, 26(2), 211-231. https://doi.org/10.1080/13675567.2021.1945018

Wei, L. Y. (2012). An adaptive expectation genetic algorithm based on anfis and multinational

stock market volatility causality for taiex forecasting. Cybernetics and Systems, 43(5), 410-

https://doi.org/10.1080/01969722.2012.688687

Xia, A. G., Stroud, C. A., & Makar, P. A. (2011). Development of a simple unified volatility-based scheme (suvs) for secondary organic aerosol formation using genetic algorithms. Atmospheric Chemistry and Physics, 11(13), 6185-6205. https://doi.org/10.5194/acp-11-

-2011

Xu, L. (2021). Stock volatility prediction based on convolutional neural network. Basic & Clinical Pharmacology & Toxicology, 128(S1), 178.

Yang, R., Yu, L., Zhao, Y., Yu, H., Xu, G., Wu, Y., & Liu, Z. (2020). Big data analytics for financial

Market volatility forecast based on support vector machine. International Journal of Information Management, 50, 452-462. https://doi.org/10.1016/j.ijinfomgt.2019.05.027

Zeng, Y., & Klabjan, D. (2019). Online adaptive machine learning based algorithm for implied

volatility surface modeling. Knowledge-Based Systems, 163(1), 376-391. https://doi.org/10.1016/j.knosys.2018.08.039

Zhai, J., Cao, Y., & Liu, X. (2020). A neural network enhanced volatility component model. Quantitative Finance, 20(5), 783-797. https://doi.org/10.1080/14697688.2019.1711148

Zhu, E., Yang, G., & Liu, J. (2013). Comments and further improvements on “pth moment stability of stochastic neural networks with Markov volatilities.” Neural Computing and Applications, 23(3), 1179-1183. https://doi.org/10.1007/s00521-013-1396-9

Downloads

Não há dados estatísticos.

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.