Conteúdo do artigo principal

Autores

Introdução: o tratamento ortodôntico é responsável pelo aumento gengival (AG), uma condição clínica caracterizada pelo crescimento patológico difuso ou localizado do tecido gengival. O acúmulo excessivo de matriz extracelular (MEC), incluindo colágeno tipo I, parece contribuir para as manifestações patológicas do AG. O objetivo deste trabalho é identificar e descrever a distribuição do colágeno do tipo I no tecido gengival de pacientes com AG devido à ortodontia fixa. Materiais e métodos: estudo descritivo que analisou os tecidos gengivais de indivíduos diagnosticados com AG em uso de ortodontia (teste, n = 5) e indivíduos periodontalmente saudáveis (controle, n = 5). As amostras foram obtidas por gengivectomia. Todas as biópsias foram fixadas, embebidas em parafina, cortadas e analisadas com coloração  picrosirius vermelho/verde rápido, a fim de distinguir as fibras colágenas. Usando uma reação imuno-histoquímica, o colágeno tipo I foi identificado com anticorpo monoclonal. Resultados: em pacientes com AG devido ao tratamento ortodôntico, foi identificado tecido epitelial hiperplásico com evidente aumento das extensões epiteliais e tecido conjuntivo com abundantes feixes de fibras colágenas, principalmente na lâmina basal e região subjacente. As fibras de colágeno tipo I em tecidos de pacientes com AG ortodôntico eram espessas comaspecto desorganizado e intensa coloração imuno-histoquímica, em comparação com as fibras do grupo controle. Conclusões: o aumento das fibras colágenas, principalmente do colágeno do tipo I, é um achado histológico que caracteriza os pacientes com ag devido à ortodontia fixa.

Simancas-Escorcia, V., Harris-Ricardo, J. ., & Díaz-Caballero, A. (2022). Colágeno do tipo I no aumento gengival induzido por tratamento ortodôntico: um estudo imuno-histoquímico piloto. Revista Ciencias De La Salud, 20(3). https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.10216

Drăghici EC, CrăiŢoiu Ş, MercuŢ V, Scrieciu M, Popescu SM, Diaconu OA, et al. Local cause of gingival overgrowth: Clinical and histological study. Rom J Morphol Embryol. 2016;57(2):427-35.

Ramakrishnan H, Noorullah A, Venugopal L. A clinical report of solitary gingival overgrowth in a young female patient. J Pharm Bioall Sci. 2019;11(6):491. https://doi.org/10.4103/JPBS.JPBS_8_19

Elavarasu S, Thangavelu A, Naveen D, Selvaraj S. Cherubism with idiopathic gingival enlargement: A rare case report. J Indian Soc Periodontol. 2017;21(6):503-6. https://doi.org/10.4103/jisp.jisp_318_13

Manzur-Villalobos I, Díaz-Rengifo I, Manzur-Villalobos D, Díaz-Caballero A. Agrandamiento gingival farmacoinducido: serie de casos. 2018;20(1). https://doi.org/10.22267/rus.182001.113

Sridharan S, Nunna P, Jaicob TE, Agustine D, Shetty V, Srirangarajan D. Role of epithelial mesenchymal transition in phenytoin influenced gingival overgrowth in children and young adults: A preliminary clinical and immunohistochemical study. J Clin Pediatr Dent. 2019;43(5):350-5. https://doi.org/10.17796/1053-4625-43.5.9

Pinto AS, Alves LS, Zenkner JE do A, Zanatta FB, Maltz M. Gingival enlargement in orthodontic patients: Effect of treatment duration. Am J Orthod Dentofacial Orthop. 2017;152(4):477-482. https://doi.org/10.1016/j.ajodo.2016.10.042

Zanatta FB, Ardenghi TM, Antoniazzi RP, Pinto TMP, Rösing CK. Association between gingivitis and anterior gingival enlargement in subjects undergoing fixed orthodontic treatment. Dental Press J Orthod. 2014;19(3):59-66. https://doi.org/10.1590/2176-9451.19.3.059-066.oar

Mártha K, Mezei T, Jánosi K. A histological analysis of gingival condition associated with orthodontic treatment. Rom J Morphol Embryol. 2013;54:823-7

Chesterman J, Beaumont J, Kellett M, Durey K. Gingival overgrowth: Part 2: management strategies. Br Dent J. 2017;222(3):159-65. https://doi.org/10.1038/sj.bdj.2017.111

Gursoy UK, Sokucu O, Uitto V-J, Aydin A, Demirer S, Toker H, et al. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. Eur J Orthod. 2007;29(6):555-8. https://doi.org/10.1093/ejo/cjm074

Rodríguez Vásquez AG, Fernández García LK, Valladares Trochez EH. Prevalencia de agrandamiento y retracción gingival en pacientes con tratamiento de ortodoncia. Portal de la Ciencia. 2018;13:21-31. https://doi.org/10.5377/pc.v13i0.5918

Şurlin P, Rauten AM, Pirici D, Oprea B, Mogoantă L, Camen A. Collagen IV and MMP-9 expression in hypertrophic gingiva during orthodontic treatment. Rom J Morphol Embryol. 2012;53(1):161-5.

Almeida T, Valverde T, Martins-Júnior P, Ribeiro H, Kitten G, Carvalhaes L. Morphological and quantitative study of collagen fibers in healthy and diseased human gingival tissues. Rom J Morphol Embryol. 2015;56(1):33-40.

Gawron K, Ochała-Kłos A, Nowakowska Z, Bereta G, Łazarz-Bartyzel K, Grabiec AM, et al. timp-1 association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Dis. 2018;24(8):1581-90. https://doi.org/10.1111/odi.12938

Gawron K, Łazarz-Bartyzel K, Fertala A, Plakwicz P, Potempa J, Chomyszyn-Gajewska M. Gingival fibromatosis with significant de novo formation of fibrotic tissue and a high rate of recurrence. Am J Case Rep. 2016;17:671-5. https://doi.org/10.12659/ajcr.899997

Almeida T, Valverde T, Martins-Júnior P, Ribeiro H, Kitten G, Carvalhaes L. Morphological and quantitative study of collagen fibers in healthy and diseased human gingival tissues. Rom J Morphol Embryol. 2015;56(1):33-40.

Carlson RV, Boyd KM, Webb DJ. The revision of the Declaration of Helsinki: Past, present and future. Br J Clin Pharmacol. 2004;57(6):695-713. https://doi.org/10.1111/j.1365-2125.2004.02103.x

Pascu EI, Pisoschi CG, Andrei AM, Munteanu MC, Rauten AM, Scrieciu M, et al. Heterogeneity of collagen secreting cells in gingival fibrosis: An immunohistochemical assessment and a review of the literature. Rom J Morphol Embryol. 2015;56(1):49-61.

Gopinath S, Harishkumar V, Santhosh V, Puthalath S. Case report on low dose of Cilnidipine: a fourth-generation calcium channel blocker-induced gingival overgrowth. J Indian Soc Periodontol. 2019;23(4):377-80. https://doi.org/10.4103/jisp.jisp_557_18

Crăiţoiu Ş, Bobic AG, Manolea HO, Mehedinţi MC, Pascu RM, Florescu AM, et al. Immunohistochemical study of experimentally drug-induced gingival overgrowth. Rom J Morphol Embryol. 2019;60(1):95-102.

Chung Y, Fu E, Chin Y-T, Tu H-P, Chiu H-C, Shen E-C, et al. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast. J Clin Periodontol. 2015;42(1):29-36. https://doi.org/10.1111/jcpe.12333

Reddy H. Management of idiopathic gingival enlargement. J Clin Diagn Res. 2016;10(5): ZJ03-4. https://doi.org/10.7860/JCDR/2016/17311.7786

Roman-Malo L, Bullon B, de Miguel M, Bullon P. Fibroblasts collagen production and histological alterations in hereditary gingival fibromatosis. diseases. 2019;7(2):39. https://doi.org/10.3390/diseases7020039

Kantarci A, Augustin P, Firatli E, Sheff MC, Hasturk H, Graves DT, et al. Apoptosis in gingival overgrowth tissues. J Dent Res. 2007;86(9):888-92. https://doi.org/10.1177/154405910708600916

Takeuchi R, Matsumoto H, Arikawa K, Taguchi C, Nakayama R, Nasu I, et al. Phenytoininduced gingival overgrowth caused by death receptor pathway malfunction. Oral Dis. 2017;23(5):653-9. https://doi.org/10.1111/odi.12651

Kitamura A, Ishida Y, Kubota H, Pack C-G, Homma T, Ito S, et al. Detection of substrate binding of a collagen-specific molecular chaperone HSP47 in solution using fluorescence correlation spectroscopy. Biochem Biophys Res Commun. 2018;497(1):279-84. https://doi.org/10.1016/j.bbrc.2018.02.069

Chen J-T, Wang C-Y, Chen M-H. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts. J Formos Med Assoc. 2018;117(12):1115-23. https://doi.org/10.1016/j.jfma.2017.12.014

Martelli-Junior H, Cotrim P, Graner E, Sauk JJ, Coletta RD. Effect of transforming growth

factor-β1, interleukin-6, and interferon-γ on the expression of type I collagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva

and hereditary gingival fibromatosis. J Periodontol. 2003;74(3):296-306. https://doi.org/10.1902/jop.2003.74.3.296

Coletta RD, Almeida OP, Reynolds MA, Sauk JJ. Alteration in expression of MMP-1 and MMP-2 but not TIMP-1 and TIMP-2 in hereditary gingival fibromatosis is mediated by TGF-beta1 autocrine stimulation. J Periodontal Res. 1999;34(8):457-63. https://doi.org/10.1111/j.1600-0765.1999.tb02281.x

Nazemisalman B, Sajedinejad N, Darvish S, Vahabi S, Gudarzi H. Evaluation of inductive

effects of different concentrations of cyclosporine A on MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2 in fetal and adult human gingival fibroblasts. J Basic Clin Physiol Pharmacol. 2019;30(3). https://doi.org/10.1515/jbcpp-2018-0176

Nan L, Zheng Y, Liao N, Li S, Wang Y, Chen Z, et al. Mechanical force promotes the proliferation and extracellular matrix synthesis of human gingival fibroblasts cultured on 3D PLGA scaffolds via TGF‑β expression. Mol Med Rep. 2019;19(3):2107-14. https://doi.org/10.3892/mmr.2019.9882

Downloads

Não há dados estatísticos.

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.