Main Article Content

Authors

Background: rickets is characterized by an alteration in the normal mineralization of bone tissue and can be classified in acquired or hereditary forms. X-linked hypophosphatemic rickets (XLH) is the most common cause of hereditary forms. It is characterized by an abnormal phosphorus metabolism due to an alteration in the PHEX gene (phosphate regulating endopeptidase analog, X-linked) located on the X chromosome. This abnormal gene affects the codification of a metalloprotease that has the function of decrease the serum levels of the fibroblast growth factor - 23 (FGF-23), generating an abnormal loss of phosphorus through urine. Patients presents with bone deformities in the lower limbs, bone pain, short stature, and dental alterations. The diagnosis is made by the clinical presentation, associated with hypophosphatemia, phosphaturia and radiological findings suggestive of rickets and it is confirmed by molecular testing with the identification of the mutation in the PHEX gene. Case presentation: we describe the case of a 5-year-old patient who was diagnosed with XLH. The early diagnosis allowed to have an early treatment implementation and this improved the clinical outcomes. Conclusion:As a rare hereditary disease that has onset in childhood and has a big impact on longitudinal growth, bone health and can potentially affects the quality of life of children, we aim to provide a basic clinical tools for a comprehensive diagnosis approach of XLH.

Jose Andres Tascón Arcila

M.D Pediatrician  Research Trainee at Mass General Brigham, mucosal immunology Boston, USA..

Ana Katherina Serrano Gayubo

Asociación Colombiana de Nefrología Pediátrica-Aconepe, Bogotá, Colombia

IPS Universitaria, Medellín, Colombia

Fresenius Medical Care, Medellín, Colombia

Universidad de Antioquia. Departamento de Pediatría y Puericultura. Facultad de Medicina, Medellín, Colombia

Maria Carmen Baquero Rodriguez

Médico cirujano y Pediatra, Universidad del Norte
Pediatra de Salud Sura, Medellín, Colombia
Docente instructor facultad de Medicina, Universidad CES, Medellín, Antioquia
Miembro de la sociedad colombiana de pediatría, regional Antioquia, Medellín, Colombia

Baquero Rodriguez, R., Tascón Arcila, J. A., Serrano Gayubo, A. K., & Baquero Rodriguez, M. C. (2024). X-Linked Hypophosphatemia, case report. Revista Ciencias De La Salud, 22(2), 1–12. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.12474

Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol. 2009 Mar;160(3):491-7.

Ramon-Krauel M. Raquitismo de causa genética. Rev Esp Endocrinol Pediátr. 2018;9 Suppl(1):48-53. https://doi.org/10.3266/RevEspEndocrinolPediatr.pre2018.Mar.458

Santos Rodríguez F. X-linked hypophosphataemic rickets and growth. Adv Ther. 2020 May 1;37(2):55-61.

Ali FN, Langman CB. Disorders of mineral metabolism. En: Clinical pediatric nephrology. 3.ª ed. Boca Ratón: CRC Press; 2016.

Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011 Jul;26(7):1381-8.

Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, et al. Burosumab Therapy in Children with X-linked hypophosphatemia. N Engl J Med. 2018 May 24;378(21):1987-98.

Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis. 2019 Dec;14(1):58.

Prié D, Friedlander G. Reciprocal control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/Klotho System. CJASN. 2010 Sep;5(9):1717-22.

Gohil A, Imel EA. FGF23 and associated disorders of phosphate wasting. Pediatr Endocrinol Rev. 2019 Sep;17(1):17-34. https://doi.org/10.17458/per.vol17.2019.gi.fgf23anddisordersphosphate

Michalus I, Rusinska A. Rare, genetically conditioned forms of rickets: differential diagnosis and advances in diagnostics and treatment. Clin Genet. 2018 Jul;94(1):103-14.

Liu S, Quarles LD. How Fibroblast Growth Factor 23 Works. JASN. 2007 Jun;18(6):1637-47.

Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, Murshed M, et al. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res. 2013 Mar;28(3):688-99.

Riancho JA. Osteomalacia y raquitismo. Rev Esp Enfer Metab Oseas. 2004;13(4):77-9.

Cassinelli H. Raquitismo hipofosfatémico familiar XLH. Arch Latin Nefr Ped. 2019;19(3):116-25.

Velásquez-Jones L, Medeiros-Domingo M. Raquitismos hipofosfatémicos hereditarios. Bol Med Hosp Infant Mex. 2013;70:11.

Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol. 2012 Sep;27(9):1477-87.

Lee JY, Imel EA. The changing face of hypophosphatemic disorders in the FGF-23 era. Pediatr Endocrinol Rev. 2013 Jun;10 Suppl 2(0 2):367-79.

Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014 Mar;3(1):R13-30.

Del Pino M, Viterbo G, Fano V. Manejo de niños con raquitismo hipofosfatémico familiar [internet]. Coordinación de Evaluación de Tecnología Sanitaria, Hospital de Pediatría Garrahan; 2017. Disponible en: https://www.garrahan.gov.ar/images/intranet/guias_atencion/GAP_2017_-_MANEJO_RAQUITISMO.pdf

Lamb YN. Burosumab: first global approval. Drugs. 2018 Apr 1;78(6):707-14.

Manufacturer’s prescribing information for CRYSVITA [internet]. 2020. Disponible en: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761068s005lbl.pdf

Downloads

Download data is not yet available.

Most read articles by the same author(s)