Revista Universidad y Empresa

ISSN-e: 2145-4558

ISSN: 0124-4639 

Lógica difusa para la toma de decisiones y la selección de personal

Francisco Javier Ruvalcaba Coyaso, Anais Vermonden

DOI: http://dx.doi.org/10.12804/rev.univ.empresa.29.2015.10

Texto completo:

PDF HTML Lector Inteligente ePub
Enviar este artículo (Es necesario iniciar sesión)
Escanee aquí para descargar

Resumen


Este trabajo de investigación se enfoca en la lógica difusa. Identifica de qué manera sirve para la selección de personal y qué publicaciones relevantes existen acerca de su efectividad en el escenario empresarial. La revisión realizada se llevó a cabo a partir de una búsqueda en bases de datos especializadas. Se encuentra que la fuzzy logic puede ofrecer al proceso de selección de personal algo de certidumbre, en particular en la toma de decisiones que lo acompaña. Puede contribuir también en el proceso de identificación de la persona más adecuada para realizar un conjunto de actividades, de acuerdo, además, con su perfil psicológico. Su uso ayuda, en efecto, a disminuir la ambigüedad y la subjetividad inherentes a la decisión en estos procesos. Esto, dado que los resultados de las pruebas psicométricas y de las entrevistas no son discrecionales, ellas se acompañan, usualmente, de múltiples criterios de asignación de valor.

Palabras clave


lógica difusa; modelos matemáticos; selección de personal; toma de decisiones

Referencias


Adler, S. (1987). Toward the more efficient use of assessment center technology in personnel selection. Journal of Business and Psychology, 2(1), p. 74–93.

Afshari, A. R., Yusuff, R. M., & Derayatifar, A. R. (2013). Linguistic extension of fuzzy integral for group personnel selection problem. Arabian Journal for Science and Engineering, 38(10), p.

-2910.

Alliger, G. M., Feinzig, S. L., & Janak, E. (1993). Fuzzy sets and personnel selection: Discussion and an application. Journal of Occupational and Organizational Psychology, 66, 163-169.

Baležentis, A., Baležentis, T., & Brauers, W. K. M. (2012a). MULTIMOORA-FG: A multi-objetive decisión making method for linguistic reasoning with an application to personnel selection. Informatica, 23(2), 173-190.

Baležentis, A., Baležentis, T., & Brauers, W. K. M. (2012b). Personnel selection based on computing with words and fuzzy MULTIMOORA. Expert Systems with applications, 39, 7961-7967.

Behzadian, M., Otaghsara, K., Yazdani, M., Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39, 13051-13069.

Blegen, M. A. (1993). Nurses’ job satisfaction: A meta-analysis of related variables. Nursing Research, 42(1), 36-41.

Bobko, P., & Roth, P. (2004). Personnel selection with top-score-referenced banding: on the inappropriateness of current procedures. International Journal of Selection and Assessment, 12(4), 291-298.

Caki, N., & Solmaz, B. (2013). The effects of facial beauty in personnel selection: A field work in retail sector. Procedia. Social and Behavioral Sciences, 84, 1203-1206.

Canós, L., Casasús, T., Crespo, E., Lara, T., & Pérez, J. (2011). Personnel selection based on fuzzy methods. Revista de Matemática: Teoría y Aplicaciones, 18(1), 177-192.

Celik, M., Kandakoglu, A., & Er, D. (2009). Structuring fuzzy integrated multi-stages evaluation model on academic personnel recruitment in MET institutions. Expert Systems with Applications, 36, 6918-6927.

Chien, C.-F., & Chen, L.-F. (2008). Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Systems with Applications, 34(1), 280-290.

Dağdeviren, M. (2010). A hybrid multi-criteria decisión-making model for personnel selection in manufacturing systems. Journal of International Manufacturing, 21, 451-460.

De Korvin, A., & Kleyle, R. (2000). A fuzzy set approach to resource procurement for multi-phase projects subject to flexible budgetary constraints. Journal of Intelligent and Fuzzy Systems, 9, 225-233.

Díaz Mora, R., Piña, J., Ríos, D., Serafín, M. (2009). Uso de AHP y conjuntos difusos para mejorar la toma de decisiones. Caso: selección de empresas contratistas de construcción en la Administración Pública Venezolana (Ponencia presentada a la 7ª Latin American and Caribbean Conference for Engineering and Technology, San Cristóbal, Venezuela).

Diken, E. H., Özturk, G., Uzel, N., & Yılmaz, M. (2011). Determining the opinions of the prospective (candidate) teachers about public personnel selection exam (KPSS). Procedia Social and Behavioral Sciences, 15, 3571-3575.

Dubois, D., & Prade, H. M. (Eds.) (2000). Fundamentals of fuzzy sets. Boston: Kluwer Academic.

Dursun, M., & Karsak, E. E. (2010). A fuzzy MCDM approach for personnel selection. Expert Systems with Applications, 37(6), 4324-4330.

Formann, A. K. (1992). Academic personnel selection: Description and prognosis of the decisions made by the committee for the selection of candidates for a full professorship. Scientometrics, 25(3), 401–414.

Grand, J. A., Golubovich, J., Ryan, A. M., & Schmitt, N. (2013). The detection and influence of problematic item content in ability tests: An examination of sensitivity review practices for personnel selection test development. Organizational Behavior and Human Decision Processes, 121(2), 158-173.

Gutjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., & Denk, M. (2010). Multi-objetive decision analysis for competence-oriented project portfolio selection. European Journal of Operational Research, 205, 670-679.

Gutman, A. (2009). Major EEO issues relating to personnel selection decisions. Human Resource Management Review, 19(3), 232-250.

Güngör, Z., Serhadlıoğlu, G., & Kesen, S. E. (2009). A fuzzy AHP approach to personnel selection problem. Applied Soft Computing, 9(2), 641-646.

Jabri, M. M. (1990). Personnel selection using INSIGHT-C: An application based on the analytic hierarchy process. Journal of Business and Psychology, 5(2), 281-285.

Jereb, E., Rajkovic, U., & Rajkovic, V. (2005). A hierarchical multi-attribute system approach to personnel selection. International Journal of Selection and Assessment, 13(3), 198-205.

Jessop, A. (2004). Minimally biased weight determination in personnel selection. European Journal of Operational Research, 153(2), 433-444

Jones, J. W., & Wuebker, L. J. (1988). Accident prevention through personnel selection. Journal of Business and Psychology, 3(2), 187198.

Kabak, M., Burmaoglu, S., & Kazancoglu, Y. (2012). A fuzzy hibrid MCDM approach for professional selection. Expert Systems with Applications, 39, 3516-3525.

Kelemenis, A., Askounis, D. (2010). A new TOPSIS-based multicriteria approach to personnel selection. Expert Systems with Applications, 37(7), 4999-5008.

Li, D. F. (2014). Multiattribute Decision-Making Methods with Intuitionistic Fuzzy Numbers. Studies in Fuzziness and Soft Computing, 308, 225-250.

Licata, I. (2006). General system theory, like-quantum semantics and fuzzy sets. En G. Minati, & M. Abram (Eds.), System of Emergence, Research and Development. Springer (pp. 724-734).

Lin, H. (2010). Personnel selection using analytic network process and fuzzy data envelopment analysis approaches. Computers & Industrial Engineering, 59, 937944.

Mael, F. A. (1998). Privacy and personnel selection: reciprocal rights and responsibilities. Employee Responsibilities and Rights Journal, 11(3), 187–214.

Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13.

Martin, S. L., & Godsey, C. (1999). Assessing the validity of a theoretically-based substance abuse scale for personnel selection. Journal of Business and Psychology, 13(3), 323–337.

McDaniel, M. A. (2009). Gerrymandering in personnel selection:

A review of practice. Human Resource Management Review, 19(3), 263-270.

Murphy, K. R. (2000). Impact of assessments of validity generalization and situational specificity on the science and practice of personnel selection. International Journal of Selection and Assessment, 8(4), 194-206.

Neuman, G. A., & Nomoto, J. T. (1990). Personnel selection tests for computer professionals and support technicians. Journal of Business and Psychology, 5(2), 165–177.

Oostrom, J. K., van der Linden, D., Born, M. P., & van der Molen, H. T. (2013). New technology in personnel selection: How recruiter characteristics affect the adoption of new selection technology. Computers in Human Behavior, 29(6), 2404-2415.

Özdaban, I., Özkan, C. (2010). A fuzzy method on determining of job and personnel evaluation results, and matching them with suggested model. International Journal of Industrial Engineering, 17(4), 334-340.

Özdaban, I., & Özkan, C. (2011). A case study on evaluating personnel and jobs jointly with fuzzy distances. International Journal of Industrial Engineering, 18(4), 169-179.

Pérez Pueyo, R. (2005). Procesado y optimización de espectros Raman mediante técnicas de lógica difusa: Aplicación a la identificación de materiales pictóricos (Tesis inédita, Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya, Barcelona, España).

Ralston, S. M. (1988). The effect of applicant race upon personnel selection decisions: A review with recommendations. Employee Responsibilities and Rights Journal, 1(3), 215–226.

Robertson, I. T., & Smith, M. (2001). Personnel selection. Journal of Occupational and Organizational Psychology, 74, 441-472.

Rothstein, M. G., & Goffin, R. D. (2006). The use of personality measures in personnel selection: What does current research support? Human Resource Management Review, 16, 155-180.

Rothstein, M. G., & Goffin, R. D. (2006). The use of personality measures in personnel selection: What does current research support?. Human Resource Management Review, 16(2), 155-180.

Safarzadegan Gilan, S., Sebt, M. H., & Shahhosseini, V. (2012). Computing with words for hierarchical competency based selection of personnel in construction companies. Applied Soft Computing, 12(2), 860-871.

Saad, R. M., Ahmad, M. Z., Abu, M. S., & Jusoh, M. S. (2013). Some Fuzzy Techniques for Staff Selection Process: A Survey. Proceedings of the 20th National Symposium on Mathematical Sciences, 462-469.

Saaty, T. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281.

Shanteau, J., Weiss, D. J., Thomas, R. P., & Pounds, J. C. (2002). Performance-based assessment of expertise: how to decide if a person is expert or not. European Journal of Operational Research, 136, 253-263.

Slora, K. B., Joy, D. S., & Terris, W. (1991). Personnel selection to control employee violence. Journal of Business and Psychology, 5(3), 417–426.

Storey Hooper, R., Galvin, T. P., Kilmer, R. A., & Liebowitz, J. (1998). Use of an expert system in a personnel selection process. Expert Systems With Applications, 14(4), 425–432.

Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the Analytic Hierarchy Process. Nueva York: Springer Science+Business Media.

Saaty, T. L., Peniwati, K., & Shang, J. S. (2007). The analytic hierarchy process and human resource allocation: Half the history. Mathematical and Computer Modelling, 46, 1041-1053.

Sugeno, M. (1977). Fuzzy measures and fuzzy integrals: A survey. En M. M. Gupta, G. N. Saridis & B. R. Gaines (Eds.), Fuzzy automata and decision processes (p. 89-102). Nueva York: NorthHolland.

Thornton, G. C., & Gibbons, A. M. (2009). Validity of assessment centers for personnel selection. Human Resource Management Review, 19(3), 169-187.

Vecchione, M., Alessandri, G., & Barbaranelli, C. (2012). The five factor model in personnel selection: Measurement equivalence between applicant and non-applicant groups. Personality and Individual Differences, 52(4), 503508.

Verive, J. M., & McDaniel, M. A. (1996). Short-term memory tests in personnel selection: Low adverse impact and high validity.

Intelligence, 23(1), 15–32.

Weinstein, D. (2012). The psychology of behaviorally-focused re´sume´s on applicant selection: Are your hiring managers really hiring the ‘right’ people for the ‘right’ jobs? Business Horizons, 55, 53-63.

Yager, R. R. (1981). A new methodology for ordinal multiobjetive decisions based on fuzzy sets. Decision Sciences, 12, 589-600.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338353.

Zadeh, L. A. (2002). Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference, 105, 233-264.

Zadeh. L. A. (2009). Toward extended fuzzy logic. A first step. Fuzzy Sets and Systems, 160, 3175-3181.

Zhang, S., Liu, S. (2011). A GRAbased intuitionistic fuzzy multicriteria group decision making method for personnel selection. Expert Systems with Applications, 38(9), 11401-11405.

Zysberg, L., & Nevo, B. (2004). The Smarts That Counts?: Psychologists. Decision-Making in Personnel Selection. Journal of Business and Psychology, 19(1), 117- 124.


El archivo PDF seleccionado se debe cargar aquí si su navegador tiene instalado un módulo de lectura de PDF (por ejemplo, una versión reciente de Adobe Acrobat Reader).

Si desea más información sobre cómo imprimir, guardar y trabajar con PDFs, Highwire Press le proporciona una guía útil de Preguntas frecuentes sobre PDFs.

Por otro lado, puede descargar el PDF directamente a su ordenador donde podrá abrirlo con un lector de PDF. Para descargar el PDF, haga clic en el enlace anterior.


Métricas