Contenido principal del artículo

César Payán-Gómez, MD, MSc, PhD
Julián Riaño-Moreno, MD, MSc
Diana Amador-Muñoz, MD, MSc
Sandra Ramírez-Clavijo, MSc, PhD
Introducción: el envejecimiento es el principal factor de riesgo para el desarrollo de enfermedades crónicas como el cáncer, la diabetes, el Parkinson y el Alzheimer. El sistema nervioso central es particularmente susceptible al deterioro funcional progresivo asociado con la edad, entre las regiones cerebrales con mayor compromiso se encuentra la corteza prefrontal (CPF). Estudios de transcriptómica de esta región han identificado como características fundamentales del proceso de envejecimiento la disminución de la función sináptica y la activación de las células de la neuroglia. No es claro cuáles son las causas iniciales, ni los mecanismos moleculares subyacentes a estas alteraciones. El objetivo de este estudio fue identificar genes clave en la desregulación transcriptómica en el envejecimiento de la CPF para avanzar en el conocimiento de este proceso. Materiales y métodos: se hizo un análisis de coexpresión de genes de los transcriptomas de 45 personas entre 60 y 80 años con el de 38 personas entre 20 y 40 años. Las redes fueron visualizadas y analizadas usando Cytoscape, se usó citoHubba para determinar qué genes tenían las mejores características topológicas en las redes de coexpresión. Resultados: se identificaron cinco genes con características topológicas altas. Cuatro de ellos —hpca, cacng3, ca10, plppr4— reprimidos y uno sobreexpresado —Cryab—. Conclusión: los cuatro genes reprimidos se expresan preferencialmente en neuronas y regulan la función sináptica y la plasticidad neuronal, mientras el gen sobreexpresado es típico de células de la glía y se expresa como respuesta a daño neuronal facilitando la mielinización y la regeneración neuronal.

Descargas

Los datos de descargas todavía no están disponibles.
Payán-Gómez, MD, MSc, PhD, C., Riaño-Moreno, MD, MSc, J., Amador-Muñoz, MD, MSc, D., & Ramírez-Clavijo, MSc, PhD, S. (2019). Análisis de redes de coexpresión identifica posibles genes clave en el envejecimiento de la corteza prefrontal humana. Revista Ciencias De La Salud, 17(2), 202-222. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.7924

César Payán-Gómez, MD, MSc, PhD, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá.

Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá.

Julián Riaño-Moreno, MD, MSc, Faculty of Medicine, Cooperative University of Colombia, Villavicencio, Colombia. Department of Bioetics, El Bosque University, Bogotá.

Faculty of Medicine, Cooperative University of Colombia, Villavicencio, Colombia. Department of Bioetics, El Bosque University, Bogotá.

Diana Amador-Muñoz, MD, MSc, Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario.

Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario.

Sandra Ramírez-Clavijo, MSc, PhD, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá.

Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá.

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217. Doi: 10.1016/j.cell.2013.05.039

Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci. 2010;30(22):7507-15. Doi: 10.1523/JNEUROSCI.6410-09.2010

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391-9. Doi: 10.1038/nature11405

Primiani CT, Ryan VH, Rao JS, Cam MC, Ahn K, Modi HR, et al. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging. PLoS One. 2014;9(10):e110972. Doi: 10.1371/journal.pone.0110972

Cornejo F, von Bernhardi R. Age-dependent changes in the activation and regulation of microglia. Adv Exp Med Biol. 2016;949:205-26. Doi: 10.1007/978-3-319-40764-7_10

Tisserand DJ, Pruessner JC, Sanz Arigita EJ, van Boxtel MP, Evans AC, Jolles J, et al. Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage. 2002;17(2):657-69. Doi: https://doi.org/10.1006/nimg.2002.1173

Woodcock EA, Greenwald MK, Khatib D, Diwadkar VA, Stanley JA. Pharmacological stress impairs working memory performance and attenuates dorsolateral prefrontal cortex glutamate modulation. Neuroimage. 2018. D oi: 10.1016/j.neuroimage.2018.11.017

Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, et al. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging. 2012;33(3):617.e1-9. Doi: 10.1016/j.neurobiolaging.2010.07.013

Boros BD, Greathouse KM, Gearing M, Herskowitz JH. Dendritic spine remodeling accompanies Alzheimer’s disease pathology and genetic susceptibility in cognitively normal aging. Neurobiol Aging. 2019;73:92-103. Doi: 10.1016/j.neurobiolaging.2018.09.003

Chen CY, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A. 2016;113(1):206-11. Doi: 10.1073/pnas.1508249112

Chung HK, Tymula A, Glimcher P. The Reduction of Ventrolateral Prefrontal Cortex Gray Matter Volume Correlates with Loss of Economic Rationality in Aging. J Neurosci. 2017;37(49):12068-77. Doi: 10.1523/JNEUROSCI.1171-17.2017

Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018;115(8):E1896-E905. Doi: 10.1073/pnas.1800165115

Dillman AA, Majounie E, Ding J, Gibbs JR, Hernandez D, Arepalli S, et al. Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Sci Rep. 2017;7(1):16890. Doi: 10.1038/s41598-017-17322-0

Harris SE, Riggio V, Evenden L, Gilchrist T, McCafferty S, Murphy L, et al. Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. Aging (Albany NY). 2017;9(12):2489-503. Doi: 10.18632/aging.101333

Payán-Gómez C, Rodríguez D, Amador D, Ramírez S. Integrative analysis of global gene expression 2 identifies opposite patterns of reactive astrogliosis in 3 aged human prefrontal cortex 4. aging. 2018;1:33. Doi: 10.20944/preprints201810.0733.v1

Raj T, Li YI, Wong G, Humphrey J, Wang M, Ramdhani S, et al. Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat Genet. 2018;50(11):1584-92. Doi: 10.1038/s41588-018-0238-1

Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20(2):281-300. Doi: 10.1080/10543400903572753

Miller C. Simpleaffy: Very simple high level analysis of Affymetrix data; 2018.

Gautier L. Affydata: Affymetrix Data for Demonstration Purpose. R package version 1.30.0. 2018.

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118-27. Doi: 10.1093/biostatistics/ kxj037

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. Doi: 10.1093/nar/gkv007

Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. Doi: 10.1038/ nprot.2008.211

Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17. Doi: 10.2202/1544-6115.1128

Elo LL, Järvenpää H, Oresic M, Lahesmaa R, Aittokallio T. Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics. 2007;23(16):2096-103. Doi: 10.1093/bioinformatics/btm309

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. Doi: 10.1101/gr.1239303

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4:S11. Doi: 10.1186/1752-0509-8-S4-S11

Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448-9. Doi: 10.1093/bioinformatics/bti551

Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of dna methylation in epigenetics of aging. Pharmacol Ther. 2018. Doi: 10.1016/j. pharmthera.2018.11.001

Gladyshev VN. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell. 2016;15(4):594-602. Doi: 10.1111/acel.12480

Taylor AM, Pattie A, Deary IJ. Cohort Profile Update: The Lothian birth cohorts of 1921 and 1936. Int J Epidemiol. 2018;47(4):1042-r. Doi: 10.1093/ije/dyy022

Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Genomic instability and dna replication defects in progeroid syndromes. Nucleus. 2018;9(1):368-79. Doi: 10.1080/19491034.2018.1476793

Frenk S, Houseley J. Gene expression hallmarks of cellular ageing. Biogerontology. 2018;19(6):547-66. Doi: 10.1007/s10522-018-9750-z

Hol EM, Pekny M. Glial fibrillary acidic protein (gfap) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121-30. Doi: 10.1016/j.ceb.2015.02.004

Kohama SG, Goss JR, Finch CE, McNeill TH. Increases of glial fibrillary acidic protein in the aging female mouse brain. Neurobiol Aging. 1995;16(1):59-67.

Badaut J, Brunet JF, Grollimund L, Hamou MF, Magistretti PJ, Villemure JG, et al. Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir Suppl. 2003;86:495-8.

Badaut J, Fukuda AM, Jullienne A, Petry KG. Aquaporin and brain diseases. Biochim Biophys Acta. 2014;1840(5):1554-65. Doi: 10.1016/j.bbagen.2013.10.032

Hoshi A, Tsunoda A, Tada M, Nishizawa M, Ugawa Y, Kakita A. Expression of aquaporin 1 and aquaporin 4 in the temporal neocortex of patients with Parkinson’s disease. Brain Pathol. 2017;27(2):160-8. Doi: 10.1111/bpa.12369

Emmerling MR, Watson MD, Raby CA, Spiegel K. The role of complement in Alzheimer’s disease pathology. Biochim Biophys Acta. 2000;1502(1):158-71. Doi: https://doi.org/10.1016/ S0925-4439(00)00042-9

Zhou J, Fonseca MI, Pisalyaput K, Tenner AJ. Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J Neurochem. 2008;106(5):2080-92. Doi: 10.1111/j.1471-4159.2008.05558.x

Harford-Wright E, Gavard J. Apelin, the devil inside brain tumors. J Exp Neurosci. 2018;12:1179069518759680. Doi: 10.1177/1179069518759680

Harford-Wright E, Andre-Gregoire G, Jacobs KA, Treps L, Le Gonidec S, Leclair HM, et al. Pharmacological targeting of apelin impairs glioblastoma growth. Brain. 2017;140(11):2939-54. Doi: 10.1093/brain/awx253

Sakimoto S, Kidoya H, Naito H, Kamei M, Sakaguchi H, Goda N, et al. A role for endothelial cells in promoting the maturation of astrocytes through the apelin/APJ system in mice. Development. 2012;139(7):1327-35. Doi: 10.1242/dev.072330

Palmer AL, Ousman SS. Astrocytes and aging. Front Aging Neurosci. 2018;10:337. Doi: 10.3389/fnagi.2018.00337

Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci U S A. 2010;107(28):12698703. Doi: 10.1073/pnas.0914257107

Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 2013;5(5):48. Doi: 10.1186/gm452

Helassa N, Antonyuk SV, Lian LY, Haynes LP, Burgoyne RD. Biophysical and functional characterization of hippocalcin mutants responsible for human dystonia. Hum Mol Genet. 2017;26(13):2426-35. Doi: 10.1093/hmg/ddx133

Moss FJ, Dolphin AC, Clare JJ. Human neuronal stargazin-like proteins, gamma2, gamma3 and gamma4; an investigation of their specific localization in human brain and their influence on CaV2.1 voltage-dependent calcium channels expressed in Xenopus oocytes. BMC Neurosci. 2003;4:23. Doi: 10.1186/1471-2202-4-23

Everett KV, Chioza B, Aicardi J, Aschauer H, Brouwer O, Callenbach P, et al. Linkage and association analysis of CACNG3 in childhood absence epilepsy. Eur J Hum Genet. 2007;15(4):463-72. Doi: 10.1038/sj.ejhg.5201783

VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem. 2010;113(6):1577-88. Doi: 10.1111/j.1471-4159.2010.06719.x

Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem. 2004;19(3):199-229. Doi: 10.1080/14756360410001689540

Sterky FH, Trotter JH, Lee SJ, Recktenwald CV, Du X, Zhou B, et al. Carbonic anhydraserelated protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proc Natl Acad Sci U S A. 2017;114(7):E1253-E62. Doi: 10.1073/pnas.1621321114

Sciorra VA, Morris AJ. Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim Biophys Acta. 2002;1582(1-3):45-51. Doi: https://doi.org/10.1016/ S1388-1981(02)00136-1

Bräuer AU, Savaskan NE, Kühn H, Prehn S, Ninnemann O, Nitsch R. A new phospholipid phosphatase, PRG-1, is involved in axon growth and regenerative sprouting. Nat Neurosci. 2003;6(6):572-8. Doi: 10.1038/nn1052

Trimbuch T, Beed P, Vogt J, Schuchmann S, Maier N, Kintscher M, et al. Synaptic PRG1 modulates excitatory transmission via lipid phosphate-mediated signaling. Cell. 2009;138(6):1222-35. Doi: 10.1016/j.cell.2009.06.050

Yamamoto S, Yamashita A, Arakaki N, Nemoto H, Yamazaki T. Prevention of aberrant protein aggregation by anchoring the molecular chaperone αB-crystallin to the endoplasmic reticulum. Biochem Biophys Res Commun. 2014;455(3-4):241-5. Doi: 10.1016/j.bbrc.2014.10.151

Oliveira AO, Osmand A, Outeiro TF, Muchowski PJ, Finkbeiner S. αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington’s disease. Hum Mol Genet. 2016;25(9):1677-89. Doi: 10.1093/hmg/ddw028

Anders F, Liu A, Mann C, Teister J, Lauzi J, Thanos S, et al. The small heat shock protein α-crystallin B shows neuroprotective properties in a glaucoma animal model. Int J Mol Sci. 2017;18(11). Doi: 10.3390/ijms18112418

Liu Y, Zhou Q, Tang M, Fu N, Shao W, Zhang S, et al. Upregulation of alphaB-crystallin expression in the substantia nigra of patients with Parkinson’s disease. Neurobiol Aging. 2015;36(4):1686-91. Doi: 10.1016/j.neurobiolaging.2015.01.015

Kuipers HF, Yoon J, van Horssen J, Han MH, Bollyky PL, Palmer TD, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci U S A. 2017;114(9):E1745-E54. Doi: 10.1073/pnas.1621314114

Narayanan S, Kamps B, Boelens WC, Reif B. alphaB-crystallin competes with Alzheimer’s disease beta-amyloid peptide for peptide-peptide interactions and induces oxidation of Abeta-Met35. FEBS Lett. 2006;580(25):5941-6. Doi: 10.1016/j.febslet.2006.09.063

Ren Z, Yang M, Guan Z, Yu W. Astrocytic α7 nicotinic receptor activation inhibits amyloid-β aggregation by upregulating endogenous αB-crystallin through the PI3K/Akt signaling pathway. Curr Alzheimer Res. 2018. Doi: 10.2174/1567205015666181022093359

Li R, Reiser G. Phosphorylation of Ser45 and Ser59 of αB-crystallin and p38/extracellular regulated kinase activity determine αB-crystallin-mediated protection of rat brain astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem. 2011;118(3):354-64. Doi: 10.1111/j.1471-4159.2011.07317.x

Morrison LE, Hoover HE, Thuerauf DJ, Glembotski CC. Mimicking phosphorylation of alphaB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circ Res. 2003;92(2):203-11.

Chis R, Sharma P, Bousette N, Miyake T, Wilson A, Backx PH, et al. α-crystallin B prevents apoptosis after H2O2 exposure in mouse neonatal cardiomyocytes. Am J Physiol Heart Circ Physiol. 2012;303(8):H967-78. Doi: 10.1152/ajpheart.00040.2012

Zigmond RE. Heat shock protein that facilitates myelination of regenerating axons. Proc Natl Acad Sci U S A. 2017;114(9):2103-5. Doi: 10.1073/pnas.1700755114

Lim EF, Nakanishi ST, Hoghooghi V, Eaton SE, Palmer AL, Frederick A, et al. Alpha B crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114(9):E1707-E16. Doi: 10.1073/pnas.1612136114

Detalles del artículo