Contenido principal del artículo

Gustavo Alexis Calderón-De la Cruz
César Merino-Soto

Introducción: el Maslach Burnout Inventory-Human Service Survey (MBI-HSS) es un instrumento de medición que fue aplicado en médicos peruanos utilizando la Encuesta Nacional de Satisfacción de Usuarios en Salud (Ensusalud) en el año 2014. Sin embargo, la evidencia de validez de su estructura interna no se ha elaborado hasta la actualidad y su examinación parece necesaria debido a las diferentes propuestas que existen sobre su configuración factorial. El presente estudio tiene por objetivo examinar la validez de la estructura interna del MBI-HSS en médicos peruanos con datos secundarios de la Ensusalud. Materiales y métodos: la muestra estuvo conformada por 2222 médicos de diferentes regiones de Perú seleccionados a partir de un muestreo probabilístico bietápico y estratificado. La validez de la estructura interna del MBI-HSS fue evaluada a través del análisis factorial exploratorio y confirmatorio; la confiabilidad fue estimada según la consistencia interna (coeficientes alfa y omega); y se evaluó el funcionamiento diferencial de los ítems (DIF) según el sexo. Resultados: se demuestra una estructura interna de tres factores en el MBI-HSS con reducción de tres ítems; la confiabilidad fue adecuada (entre 0.845 y 0.918), aunque disminuyó considerablemente en presencia de errores correlacionados (entre 0.335 y 0.517); en cuanto al dif, se encontró que el ítem 10 presentó variación según el sexo. Conclusión: la versión original (22 ítems) del MBI-HSS no es pertinente para la evaluación del burnout en médicos peruanos, siendo viable la propuesta de 19 ítems, aunque al ser un estudio inicial de validación se requerirá una réplica de resultados.

Descargas

Los datos de descargas todavía no están disponibles.

Freudenberger HJ. Staff burnout. J Soc Issues. 1974;30(1):159-65. Doi: https://www.doi. org/10.1111/j.1540-4560.1974.tb00706.x

Freudenberger HJ. The staff burnout syndrome in alternative institutions. Psychotherapy: Theory Research & Practice. 1975;12(1):73-82. Doi: https://www.doi.org/10.1037/h0086411

Maslach C. Burned-out. Human Behavior. 1976;5(9):16-22.

Maslach C. Job burnout. How people cope. Public Welfare. 1978;36(2):56-8.

Maslach C. The client role in staff burnout. J Soc Issues. 1978;34(4):111-24. Doi: https:// www.doi.org/10.1111/j.1540-4560.1978.tb00778.x

Maslach C, Schaufeli WB. Historical and conceptual development of burnout. En Schaufeli WB, Maslach C, Marek T, editors. Professional Burnout: Recent Developments in Theory and Research. Washington, DC: Taylor & Francis; 1993. p. 1-16.

Maslach C, Schaufeli WB, Leiter MP. Job burnout. Annu Rev Psychol. 2001;52:397-422. Doi: https://www.doi.org/10.1146/annurev.psych.52.1.397

Alarcon GM. A meta-analysis of burnout with job demands, resources, and attitudes. J VocatBehav. 2011;79(2):549-62. Doi: https://www.doi.org/10.1016/j.jvb.2011.03.007

Lee RT, Ashforth BE. A meta-analytic examination of the correlates of the three dimensions of job burnout. J Appl Psychol. 1996;81(2):123-33. Doi: https://www.doi. org/10.1037/0021-9010.81.2.123

Salvagioni DAJ, Melanda FN, Mesas AE, González AD, Gabani FL, Andrade SMd. Physical, psychological and occupational consequences of job burnout: A systematic review of prospective studies. PLoS One. 2017;12(10):e0185781. Doi: https://www.doi.org/10.1371/ journal.pone.0185781

Maslach C, Jackson SE, Leiter MP. Maslach Burnout Inventory (3rd ed.). Palo Alto, CA: Consulting Psychology Press; 1996.

Leiter MP, Frank E, Matheson TJ. Demands, values, and burnout: relevance for physicians. Can Fam Physician. 2009;55(12):1224-5.e12256.

Adám S, Györffy Z, Susánszky É. Physician burnout in Hungary: A Potential Role for Work-Family Conflict. J Health Psychol. 2008;13(7):847-56. Doi: https://www.doi. org/10.1177/1359105308095055

Azam K, Khan A, Alam MT. Causes and adverse impact of physician burnout: A systematic review. J Coll Physicians Surg Paki: JCPSP. 2017;27(8):495-501.

Kumar S. Burnout and doctors: Prevalence, prevention and intervention. Healthcare (Basel). 2016;4(3). Pii: E37. Doi: https://www.doi.org/10.3390/healthcare4030037

Calderón-De la Cruz GA, Merino-Soto C, Juárez-García A, Dominguez-Lara S, Fernández-Arata M. ¿Es replicable la estrutura factorial del Maslach Burnout Inventory Human Services Survey (MBI-HSS) en la profesión de enfermera del Perú?: un estudio nacional. Enferm Clin. 2020. Doi: https://www.doi.org/10.1016/j.enfcli.2019.12.013

Maslach C, Jackson SE. MBI: Maslach Burnout Inventory. Manual. Palo Alto, CA: Consulting Psychologists Press; 1981.

Schaufeli WB, Enzmann D. The burnout companion to study and research: A critical analysis. London: Taylor & Francis; 1998.

Worley JA, Vassar M, Wheeler DL, Barnes LLB. Factor structure of scores from the Maslach Burnout Inventory: A review and meta-analysis of 45 exploratory and confirmatory factor-analytic studies. EducPsychol Meas. 2008;68(5):797-823. Doi: https://www. doi.org/10.1177/0013164408315268

Squires A, Finlayson C, Gerchow L, Cimiotti JP, Matthews A, Schwendimann R, et al. Methological considerations when translation “burnout”. Burn Res. 2004;1(2): 59-68. Doi: https://www.doi.org/10.1016/j.burn.2014.07.001

Kulakova O, Moreno B, Garrosa E, Sanchez MO, Aragón A. Universalidad del constructo del Maslach Burnout Inventory en el contexto latinoamericano. Acta de Investigación Psicológica. 2014;7:2679-90. Doi: https://www.doi.org/10.1016/j.aipprr.2017.05.001

Loera B, Converso D, Viotti S. Evaluating the psychometric properties of the Maslach Burnout Inventory-Human Services Survey (MBI-HSS) among Italian Nurses: how many factors must a researcher consider? PLos ONE. 2014;9(12):e114987. Doi: https://www. doi.org/10.1371/journal.pone.0114987

Lee, H, Chien T, Yen M. Examining factor structure of Maslach Burnout Inventory among nurses in Taiwan. J Nurs Management. 2012;21(4):648-56. Doi: https://www.doi. org/10.1111/j.1365-2834.2012.01427.x

Kanste O, Miettunen J, Kyngäs H. Factor structure of the Maslach Burnout Invetory among finnish nursing staff. Nurs Health Sci. 2006;8:201-7. Doi: https://www.doi.org/10.1111/ j.1442-2018.2006.00283.x

Olivares-Faúndez VE, Mena-Miranda L, Jélvez-Wilke C, Macía-Sepúlveda F. Validez factorial del Maslach Burnout Inventory Human Services (MBI-HSS) en profesionales chilenos. Univ Psychol. 2013;13(1):145-59. Doi: https://www.doi.org/10.11144/Javeriana. UPSY13-1.vfmb

Poghosyan L, Aiken LH, Sloane DM. Factor structure of the Maslach Burnout Inventory: An analysis of data from large scale cross-sectional surveys of nurses from eight countries. Int J Nurs Stud. 2009;46(7):894-902. Doi: https://www.doi.org/10.1016/j. ijnurstu.2009.03.004

Vicente CS, Oliveira RA, Maroco J. Análise fatorial do Inventário de Burnout de Maslach (MBI-HSS) em profissionais portugueses. Psicologia, Saúde & Doenças. 2013;14(1):152-67.

Gil-Monte PR. Factorial validity of the Maslach Burnout Inventory (MBI-HSS) among Spanish professionals. Rev Saúde Pública. 2005;39(1):1-8.

Valente SDS, Wang YP, Menezes PR. Structural validity of the Maslach Burnout Inventory and influence of depressive symptoms in banking workplace: Unfastening the occupational conundrum. Psychiatry Res. 2018;267: 68-174. Doi: https://www.doi.org/10.1016/j. psychres.2018.05.069

Córdoba L, Tamayo JA, Gonzáles MA, Martinez MI, Rosales A, Barbato SH. Adaptation and validation of the Maslach Burnout Inventory-Human Services Survey in Cali, Colombia. Colomb Med. 2011;42(3):286-93.

Naudé JIP, Rothmann S. The validation of the Maslach Burnout Inventory-Human Services Survey for emergency medical technicians in Gauteng. SAJIP. 2004;30(3):21-8.

Matejić B, Milenović M, KisićTepavčević D, Simić D, Pekmezović T, Worley JA. Psychometric properties of the Serbian version of the Maslach Burnout Inventory-Human Services Survey: A validation study among anesthesiologists from Belgrade teaching hospitals. The Scientific World Journal. 2015;1-8. Doi: https://www.doi.org/10.1155/2015/903597

Ministerio de Trabajo y Promoción del Empleo. Informe técnico de los factores de riesgo psicosocial en trabajadores de Lima Metropolitana. Lima; 2014.

Solís-Cóndor R, Tantalean-del Águila M, Burgos-Aliaga R, Chambi-Torres J. Agotamiento profesional: prevalencia y factores asociados en médicos y enfermeras en siete regiones del Perú. An Fac Med. 2017;78(3):270-6. Doi: https://www.doi.org/10.15381/ana-les. v78i3.13757

Arteaga-Romaní A, Junes-Gonzales W, Navarrete-Saravia A. Prevalencia del síndrome de burnout en personal de salud. Rev Méd Panacea. 2014;4(2):40-4.

Maticorena-Quevedo J, Beas R, Anduaga-Beramendi A, Mayta-Trista P. Prevalencia del síndrome de burnout en médicos y enfermeras del Perú, Ensusalud 2014. Rev Peru Med Exp Salud Pública. 2016;33(2):241-7. Doi: https://www.doi.org/10.17843/rpme- sp.2016.332.2170

Beas R, Anduaga-Beramendi A, Maticorena-Quevedo J, Mayta-Tristán P. Factores asociados con el síndrome de Burnout en médicos y enfermeras, Perú. 2014. Rev Fac Cien Med Univ Nac Córdoba. 2017;74(4):331-7. Doi: https://www.doi.org/10.31053/1853.0605. v74.n4.16344

Díaz F, Gómez CI. La investigación sobre el síndrome de burnout en Latinoamérica entre 2000 y el 2010. Psicología desde el Caribe. 2016;33(1):113-31.

Merino-Soto C, Calderón-De la Cruz GA. Validez de estudios peruanos sobre estrés y burnout. Rev Peru Med Exp Salud Publica. 2018;35(2):353-4. Doi: https://www.doi. org/10.17843/rpmesp.2018.352.3521

American Educational Research Association, American Psychological Association, National Council on Measurement in Education. Standards for Educational and Psychological Testing. Washington, DC: American Educational Research Association; 2014.

Ato M, López JJ, Benavente A. Un sistema de clasificación de los diseños de investigación en psicología. Anal Psicol. 2013;29(3):1038-59. Doi: https://www.doi.org/10.6018/analesps.29.3.178511

Montero I., Leon O. A guide for naming research studies in Psychology. Int J Clin Health Psychol. 2007;7(3):847-62.

Lorenzo-Seva U, Ferrando PJ. Factor: A computer program to fit the exploratory factor analysis model. Behav Res Methods. 2006;38:88-91. Doi: https://www.doi.org/10.3758/ BF03192753

Horn JL. A rationale and test for the number of factors in factor analysis. Psychometrika. 1965;32:179-85. Doi: https://www.doi.org/10.1007/BF02289447

Fleming JS. Computing measures of simplicity of fit for loadings in factor-analytically derived scales. Behav Res Methods Instrum Comput. 2003;34:520-4.

Bentler PM, Wu EJC. EQS 6.2 for windows [Statistical Program]. Encino: Multivariate Software, Inc; 2012.

Satorra A, Bentler PM. Corrections to test statistics and standard errors in covariance structure analysis. En von Eye A, Clogg CC, editors, Latent variables analysis: Applications for developmental research. Thousand Oaks, CA: Sage; 1994. p. 399-419.

Brown TA. Confirmatory factor analysis for applied research. 2nd ed. New York: The Guilford Press; 2015.

Sörbom, D. Model modification. Psychometrika. 1989;54(3):371-84. Doi: https://www. doi.org/10.1007/BF02294623

Domínguez-Lara S, Merino-Soto C. Evaluación de las malas especificaciones en modelos de ecuaciones estructurales. Rev Argent Cienc Comport. 2018;10(2):19-24. Doi: https:// www.doi.org/10.32348/1852.4206.v10.n2.19595

Saris WE, Satorra A, Van der Veld WM. Testing structural equation modeling or detection of misspecifications? Struct Equ Modeling. 2009;16(4):561-82. Doi: https://www.doi. org/10.1080/10705510903203433

Davis JA. A Partial Coefficient for Goodman and Kruskal’s Gamma. J Am Stat Assoc. 1967;62(317):189-93. Doi: https://www.doi.org/10.1080/01621459.1967.10482900

Kreiner S. Analysis of multidimensional contingency tables by exact conditional tests. Scandinavian Journal of Statistic. 1987;14:97-112.

Schnohr CW, Makransky G, Kreiner S, Torsheim T, Hofmann F, De Clercq B, Elgar FJ, Currie C. Item response drift in the Family Affluence Scale: A study on three consecutive surveys of the Health Behaviour in School-aged Children (HBSC) survey Measurement. 2013;46, 3119-3126. Doi: https://www.doi.org/10.1016/j.measurement.2013.06.016

Schnohr CW, Kreiner S, Due EP, Currie C, Boyce W, Diderichsen F. Differential Item Functioning of a Family Affluence Scale: Validation Study on Data from HBSC 2001/02. Soc Indic Res. 2007;89(1):79-95. Doi: https://www.doi.org/10.1007/s11205-007-9221-4

Cronbach L. Coefficient alpha and the internal structure of tests. Psychomerika. 1951;16:297-334. Doi: https://www.doi.org/10.1007/BF02310555

McDonald RP. Test theory: A unified treatment. Mahwah, N.J.: L. Erlbaum Associates; 1999.

Raykov T. Point and interval estimation of reliability for multiple-component measuring instruments via linear constraint covariance structure modeling. Structural Equation Modeling. 2004;11(3):452-83. Doi: https://www.doi.org/10.1207/s15328007sem1103

Chao SF, McCallion P, Nickle T. Factorial validity and consistency of the Maslach Burnout Inventory among staff working with persons with intellectual disability and dementia. J Intellect Disabil Res. 2011;55(5):529-36. Doi: https://www.doi.org/10.1111/j.1365- 2788.2011.01413.x

Samaranayake DBDL, Seneviratne S.R. Validity of the Maslach Burnout Inventory-Human Services Survey among Sri Lankan nursing officer. Psychol Stud; 2011;57(1):101-11. Doi: https://www.doi.org/10.1007/s12646-011-0135-5

Yu K, Lee, SM, Nesbit EA. Development of a culturally valid Counselor Burnout Inventory for Korean counselor. Measurement and Evaluation in Counseling and Development. 2008;41(3):152-61. Doi: https://www.doi.org/10.1080/07481756.2008.11909827

Pisanti R, Lombardo C, Lucidi F, Violani c, Lazzari D. Psychometric properties of the Maslach Burnout Inventory for Human Services among Italian nurses: A test of alternative models. J Adv Nurs. 2012;69(3):697-707. Doi: https://www.doi.org/10.1111/j.1365- 2648.2012.06114.x

Asparouhov T, Muthén B. Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal. 2009;16(3):397-438. Doi: https://www.doi. org/10.1080/10705510903008204

Detalles del artículo