Contenido principal del artículo

Víctor Simancas-Escorcia
Jonathan Harris-Ricardo
Antonio Díaz-Caballero

Introducción: el tratamiento ortodóntico es responsable del agrandamiento gingival (AG), una condición clínica caracterizada por el crecimiento patológico, difuso o localizado del tejido gingival. La acumulación excesiva de la matriz extracelular (MEC), incluyendo el colágeno tipo I, parece contribuir a las manifestaciones patológicas del AG. El objetivo del artículo es identificar y describir la distribución del colágeno tipo I en el tejido gingival de pacientes con AG por ortodoncia fija. Materiales y métodos: estudio de tipo descriptivo que analizó los tejidos gingivales de sujetos diagnosticados con AG portadores de ortodoncia (test, n = 5) e individuos periodontalmente sanos (control, n = 5). Las muestras se obtuvieron mediante gingivectomía. Todas las biopsias fueron fijadas, incluidas en parafina, cortadas y analizadas por medio de la coloración rojo picrosirius/verde rápido, para distinguir las fibras de colágeno. Mediante una reacción inmunohistoquímica, el colágeno tipo I fue identificado con anticuerpo monoclonal. Resultados: en los pacientes con AG por tratamiento ortodóntico, se identificó un tejido epitelial hiperplásico con aumento evidente de las prolongaciones epiteliales y un tejido conectivo con abundantes haces de fibras de colágenos, principalmente en la lámina basal y la zona subyacente. Las fibras de colágeno tipo I en los tejidos de pacientes con AG por ortodoncia fueron gruesas de aspecto desorganizado, con una tinción inmunohistoquímica intensa, en comparación con las fibras del grupo control. Conclusiones: el aumento de fibras de colágenos, en especial de colágeno de tipo I, es un hallazgo histológico que caracteriza a los pacientes con AG por ortodoncia fija.

Descargas

Los datos de descargas todavía no están disponibles.
Simancas-Escorcia, V., Harris-Ricardo, J. ., & Díaz-Caballero, A. . (2022). Colágeno tipo I en el agrandamiento gingival inducido por tratamiento ortodóntico: un estudio inmunohistoquímico piloto. Revista Ciencias De La Salud, 20(3). https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.10216

Drăghici EC, CrăiŢoiu Ş, MercuŢ V, Scrieciu M, Popescu SM, Diaconu OA, et al. Local cause of gingival overgrowth: Clinical and histological study. Rom J Morphol Embryol. 2016;57(2):427-35.

Ramakrishnan H, Noorullah A, Venugopal L. A clinical report of solitary gingival overgrowth in a young female patient. J Pharm Bioall Sci. 2019;11(6):491. https://doi.org/10.4103/JPBS.JPBS_8_19

Elavarasu S, Thangavelu A, Naveen D, Selvaraj S. Cherubism with idiopathic gingival enlargement: A rare case report. J Indian Soc Periodontol. 2017;21(6):503-6. https://doi.org/10.4103/jisp.jisp_318_13

Manzur-Villalobos I, Díaz-Rengifo I, Manzur-Villalobos D, Díaz-Caballero A. Agrandamiento gingival farmacoinducido: serie de casos. 2018;20(1). https://doi.org/10.22267/rus.182001.113

Sridharan S, Nunna P, Jaicob TE, Agustine D, Shetty V, Srirangarajan D. Role of epithelial mesenchymal transition in phenytoin influenced gingival overgrowth in children and young adults: A preliminary clinical and immunohistochemical study. J Clin Pediatr Dent. 2019;43(5):350-5. https://doi.org/10.17796/1053-4625-43.5.9

Pinto AS, Alves LS, Zenkner JE do A, Zanatta FB, Maltz M. Gingival enlargement in orthodontic patients: Effect of treatment duration. Am J Orthod Dentofacial Orthop. 2017;152(4):477-482. https://doi.org/10.1016/j.ajodo.2016.10.042

Zanatta FB, Ardenghi TM, Antoniazzi RP, Pinto TMP, Rösing CK. Association between gingivitis and anterior gingival enlargement in subjects undergoing fixed orthodontic treatment. Dental Press J Orthod. 2014;19(3):59-66. https://doi.org/10.1590/2176-9451.19.3.059-066.oar

Mártha K, Mezei T, Jánosi K. A histological analysis of gingival condition associated with orthodontic treatment. Rom J Morphol Embryol. 2013;54:823-7

Chesterman J, Beaumont J, Kellett M, Durey K. Gingival overgrowth: Part 2: management strategies. Br Dent J. 2017;222(3):159-65. https://doi.org/10.1038/sj.bdj.2017.111

Gursoy UK, Sokucu O, Uitto V-J, Aydin A, Demirer S, Toker H, et al. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. Eur J Orthod. 2007;29(6):555-8. https://doi.org/10.1093/ejo/cjm074

Rodríguez Vásquez AG, Fernández García LK, Valladares Trochez EH. Prevalencia de agrandamiento y retracción gingival en pacientes con tratamiento de ortodoncia. Portal de la Ciencia. 2018;13:21-31. https://doi.org/10.5377/pc.v13i0.5918

Şurlin P, Rauten AM, Pirici D, Oprea B, Mogoantă L, Camen A. Collagen IV and MMP-9 expression in hypertrophic gingiva during orthodontic treatment. Rom J Morphol Embryol. 2012;53(1):161-5.

Almeida T, Valverde T, Martins-Júnior P, Ribeiro H, Kitten G, Carvalhaes L. Morphological and quantitative study of collagen fibers in healthy and diseased human gingival tissues. Rom J Morphol Embryol. 2015;56(1):33-40.

Gawron K, Ochała-Kłos A, Nowakowska Z, Bereta G, Łazarz-Bartyzel K, Grabiec AM, et al. timp-1 association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Dis. 2018;24(8):1581-90. https://doi.org/10.1111/odi.12938

Gawron K, Łazarz-Bartyzel K, Fertala A, Plakwicz P, Potempa J, Chomyszyn-Gajewska M. Gingival fibromatosis with significant de novo formation of fibrotic tissue and a high rate of recurrence. Am J Case Rep. 2016;17:671-5. https://doi.org/10.12659/ajcr.899997

Almeida T, Valverde T, Martins-Júnior P, Ribeiro H, Kitten G, Carvalhaes L. Morphological and quantitative study of collagen fibers in healthy and diseased human gingival tissues. Rom J Morphol Embryol. 2015;56(1):33-40.

Carlson RV, Boyd KM, Webb DJ. The revision of the Declaration of Helsinki: Past, present and future. Br J Clin Pharmacol. 2004;57(6):695-713. https://doi.org/10.1111/j.1365-2125.2004.02103.x

Pascu EI, Pisoschi CG, Andrei AM, Munteanu MC, Rauten AM, Scrieciu M, et al. Heterogeneity of collagen secreting cells in gingival fibrosis: An immunohistochemical assessment and a review of the literature. Rom J Morphol Embryol. 2015;56(1):49-61.

Gopinath S, Harishkumar V, Santhosh V, Puthalath S. Case report on low dose of Cilnidipine: a fourth-generation calcium channel blocker-induced gingival overgrowth. J Indian Soc Periodontol. 2019;23(4):377-80. https://doi.org/10.4103/jisp.jisp_557_18

Crăiţoiu Ş, Bobic AG, Manolea HO, Mehedinţi MC, Pascu RM, Florescu AM, et al. Immunohistochemical study of experimentally drug-induced gingival overgrowth. Rom J Morphol Embryol. 2019;60(1):95-102.

Chung Y, Fu E, Chin Y-T, Tu H-P, Chiu H-C, Shen E-C, et al. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast. J Clin Periodontol. 2015;42(1):29-36. https://doi.org/10.1111/jcpe.12333

Reddy H. Management of idiopathic gingival enlargement. J Clin Diagn Res. 2016;10(5): ZJ03-4. https://doi.org/10.7860/JCDR/2016/17311.7786

Roman-Malo L, Bullon B, de Miguel M, Bullon P. Fibroblasts collagen production and histological alterations in hereditary gingival fibromatosis. diseases. 2019;7(2):39. https://doi.org/10.3390/diseases7020039

Kantarci A, Augustin P, Firatli E, Sheff MC, Hasturk H, Graves DT, et al. Apoptosis in gingival overgrowth tissues. J Dent Res. 2007;86(9):888-92. https://doi.org/10.1177/154405910708600916

Takeuchi R, Matsumoto H, Arikawa K, Taguchi C, Nakayama R, Nasu I, et al. Phenytoininduced gingival overgrowth caused by death receptor pathway malfunction. Oral Dis. 2017;23(5):653-9. https://doi.org/10.1111/odi.12651

Kitamura A, Ishida Y, Kubota H, Pack C-G, Homma T, Ito S, et al. Detection of substrate binding of a collagen-specific molecular chaperone HSP47 in solution using fluorescence correlation spectroscopy. Biochem Biophys Res Commun. 2018;497(1):279-84. https://doi.org/10.1016/j.bbrc.2018.02.069

Chen J-T, Wang C-Y, Chen M-H. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts. J Formos Med Assoc. 2018;117(12):1115-23. https://doi.org/10.1016/j.jfma.2017.12.014

Martelli-Junior H, Cotrim P, Graner E, Sauk JJ, Coletta RD. Effect of transforming growth

factor-β1, interleukin-6, and interferon-γ on the expression of type I collagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva

and hereditary gingival fibromatosis. J Periodontol. 2003;74(3):296-306. https://doi.org/10.1902/jop.2003.74.3.296

Coletta RD, Almeida OP, Reynolds MA, Sauk JJ. Alteration in expression of MMP-1 and MMP-2 but not TIMP-1 and TIMP-2 in hereditary gingival fibromatosis is mediated by TGF-beta1 autocrine stimulation. J Periodontal Res. 1999;34(8):457-63. https://doi.org/10.1111/j.1600-0765.1999.tb02281.x

Nazemisalman B, Sajedinejad N, Darvish S, Vahabi S, Gudarzi H. Evaluation of inductive

effects of different concentrations of cyclosporine A on MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2 in fetal and adult human gingival fibroblasts. J Basic Clin Physiol Pharmacol. 2019;30(3). https://doi.org/10.1515/jbcpp-2018-0176

Nan L, Zheng Y, Liao N, Li S, Wang Y, Chen Z, et al. Mechanical force promotes the proliferation and extracellular matrix synthesis of human gingival fibroblasts cultured on 3D PLGA scaffolds via TGF‑β expression. Mol Med Rep. 2019;19(3):2107-14. https://doi.org/10.3892/mmr.2019.9882

Detalles del artículo