Contenido principal del artículo

Carlos León

La homogeneidad, entendida como la falta de diversidad, es una fuente de fragilidad en sistemas complejos. Del mismo modo, la homogeneidad del sistema financiero ha sido documentada como un factor determinante del riesgo sistémico. En este documento se evalúa la homogeneidad en el caso colombiano, para lo cual se mide qué tan similares son los bancos según la estructura de sus estados financieros generales, así como de sus portafolios de cartera, de inversiones y de pasivos. La similitud entre bancos y una metodología de agrupamiento por aglomeración arrojan la estructura jerárquica del sistema bancario, la cual muestra cómo los bancos se relacionan entre ellos de acuerdo con su estructura financiera. El sector bancario colombiano muestra homogeneidad, en especial entre los bancos de mayor tamaño. Así mismo, es evidente que el tamaño es un factor importante en la estructura jerárquica de este sector. Los resultados son robustos a partir de un procedimiento de selección de variables basado en análisis de componentes principales, el cual reduce la dimensionalidad y redundancia de la base de datos. Los resultados permiten estudiar qué tan homogéneo es el sistema bancario, así como identificar aquellas instituciones bancarias que tienen una estructura financiera común (particular) y, por lo tanto, permiten estudiar de mejor manera el riesgo sistémico.


Los datos de descargas todavía no están disponibles.
León, C. (2020). Bancos en Colombia: ¿Qué tan homogéneos son?. Revista De Economía Del Rosario, 23(2), 1-42.

Allen, F., Babus, A., & Carletti, E. (2012). Asset commonality, debt maturity and systemic risk. Journal of Financial Economics, 104, 519-534. Doi: 10.1016/j.jfineco.2011.07.003

Alpaydin, E. (2014). Introduction to Machine Learning. The MIT Press: Cambridge.

Anderson, P. (1999). Complexity theory and organization science. Organization Science, 10(3), 216-232.

Arthur, W.B. (1999). Complexity and the economy. Science, 284, 107-109.

Aymanns, C., & Georg, C-P. (2015). Contagious synchronization and endogenous network formation in financial networks. Journal of Banking & Finance, 50, 273-285. Doi: 10.1016/j.jbankfin.2014.06.030

Beale, N., Rand, D., Battey, H., Croxson, K., May, R., & Nowak, M. (2011). Individual versus systemic risk and the regulator’s dilemma. Proceedings of the National Academy of Scinces of the United States of America (PNAS), 108(31), 12647-12652. Doi: 10.1073/pnas.1105882108

Borgatti, S. (2012). Euclidean distance and correlation. Retrieved from

Brown, S.J., Kacperczyk, M., Ljungqvist, A., Lynch, A.W., Pedersen, L.H., & Richardson, M. (2009). Hedge funds in the aftermath of the financial crisis, In Acharya, V.V. & Richardson, M. (Eds.), Restoring financial stability. Hoboken: Wiley Finance.

Caccioli, F., Shrestha, M., Moore, C., & Farmer, J.D. (2014). Stability analysis of financial contagion due to overlapping portfolios. Journal of Banking & Finance, 46, 233-245. Doi: 10.1016/j.jbankfin.2014.05.021

Cai, J., Eidam, F., Saunders, A., & Steffen, S. (2017). Syndication, interconnectedness, and systemic risk. SSRN. Retrieved from:

Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3 (1), 1-27. Doi: 10.1080/03610927408827101

Ding, M., & Tian, H. (2016). PCA-based network traffic anomaly detection. Tsinghua Science and Technology, 21(5), 500-509.

Elliot, M., Golub, B., & Jackson, M.O. (2014). Financial networks and contagion. The American Economic Review, 104(10), 3115-3153.

Everitt, B.S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis. Chichester: Wiley.

Farmer, J.D., Gallegati, M., Hommes, C., Kirman, A., Ormerod, P.,

Cincotti, S., Sánchez, A., & Helbing, D. (2012). A complex systems approach to constructing better models for managing financial markets and the economy. The European Physical Journal, 214, 295-324. Doi: 10.1140/epjst/e2012-01696-9

Ferreira, L., & Hitchcock, D.B. (2009). A comparison of hierarchical methods for clustering functional data. Communications in Statistics – Simulation and Computation, 38 (9), 1925-1949. Doi:10.1080/03610910903168603

Fricke, D. (2016). Has the banking system become more homogeneous? Evidence from banks’ loan portfolios. Economic Letters, 142, 45-48. Doi: 10.1016/j.econlet.2016.02.024

Gai, P., Haldane, A., & Kapadia, S. (2011). Complexity,

concentration and contagion.

Journal of Monetary Economics, 58, 453-470. Doi: 10.1016/j.jmoneco.2011.05.005

Goodhart, C. & Wagner, W. (2012). Regulators should encourage more diversity in the financial system. VoxEU. Retrieved from encourage-more-diversity-financial-system

Haldane, A., & May, R. (2011). Systemic risk in banking ecosystems. Nature, 469, 351-355 Doi: 10.1038/nature09659

Haldane, A. (June 8, 2009). Rethinking the financial network. Speech delivered at the Financial Student Association, Amsterdam.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17, 107-145.

Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques. San Francisco: Elsevier-Morgan Kaufman Publishers.

Hossen, B., Siraj-Ud-Doulah, & Hoque, A. (2015). Methods for evaluating agglomerative hierarchical clustering for gene expression data: a comparative study. Computational Biology and Bioinformatics, 3(6), 88-94. Doi: 10.11648/j.cbb.20150306.12

Huang, X., Vodenskea, I., Havlin, S., & Stanley, H.E. (2013). Cascading failures in bi-partite graphs: model for systemic risk propagation. Scientific Reports, 3, 1219. Doi: 10.1038/srep01219

Hüser, A-C. (2016). Too interconnected to fail: A survey of the interbank networks’ literature. SAFE Working Paper, 91, Goethe University Frankfurt-SAFE.

Ibragimov, R., Jaffe, D., & Walden, J. (2011). Diversification disasters. Journal of Financial Economics, 99, 333-348. Doi: 10.1016/j.jfineco.2010.08.015

International Monetary Fund – IMF (October, 2007). Do market risk management techniques amplify Systemic risks? Global financial stability report.

Landau, J.-P. (June 8, 2009). Complexity and the financial crisis. Introductory remarks at the Conference on The Macroeconomy and Financial Systems in Normal Times and in Times of Stress, Banque de France and Bundesbank.

León, C., Kim, G.-Y., Martínez, C., & Lee, D. (2017). Equity markets’ clustering and the global financial crisis. Quantitative Finance, 17(12), 1905-1922.

León, C., Machado, C., Cepeda, F., & Sarmiento, M. (2012). Systemic risk in large-value payment systems in Colombia: a network topology and payments simulation approach. In M. Hellqvist, & T. Laine (Eds.), Diagnostics for the financial markets – computational studies of payment system, E:45. Helsinki: Bank of Finland.

Lo, A.W. (2011). Complexity, concentration and contagion: A comment. Journal of Monetary Economics, 58, 471-479. Doi: 10.1016/j.jmoneco.2011.06.001

Martínez, W. L., & Martínez, A.R. (2008). Computational Statistics Handbook with Matlab. Boca Ratón: Chapman & Hall/CRC.

Martínez, W.L., Martínez, A.R., & Solka, J.L. (2011). Exploratory Data Analysis with Matlab. Boca Ratón: Chapman & Hall/CRC.

May, R. & Arinaminpathy, N. (2010). Systemic risk: the dynamics of model banking systems. The Journal of the Royal Society. 7, 823-838. Doi: 10.1098/rsif.2009.0359

May, R., Levin, S., & Sugihara, G. (2008). Ecology for bankers. Nature, 451, 893-895.

Mehta, P., Bukov, M., Wang, C-H., Day, A.G.R., Richardson, C., Fisher, C.K., & Schwab, D.J. (2019). A high-bias, low-variance introduction to machine learning for physicists. Physics Reports, 810, 1-124.

Miller, J. H., & Page, S. E. (2007). Complex adaptive systems. Princeton: Princeton University Press.

Milligan, G. W., & Cooper, M. C. (1987). Methodology review: Clustering methods. Applied Psychological Measurement, 11(4), 329-354. Doi: 10.1177/014662168701100401

Mitchell, M. (2011). Complexity: A guided tour. New York: Oxford University Press.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559-572.

Pool, V.K., Stoffman, N., & Yonker, S.E. (2015). The people in your neighborhood: social intercations and mutual fund portfolios. The Journal of Finance, 70(6), 2679-2731. Doi: 10.1111/jofi.12208

Rebonato, R. (2007). Plight of the fortune tellers. Princeton: Princeton University Press.

Roncoroni, A., Battiston, S., D’Errico, M., Halaj, G., & Kok, C. (2019). Interconnected banks and systemically important exposures. Bank of Canada Staff Working Paper, 2019- 44.

Simon, H. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467-482.

Sornette, D. (2003). Why stock markets crash. Princeton: Princeton

University Press.

Strogatz, S. (2003). SYNC: How order emerges from chaos in the universe, nature and daily life. New York: Hyperion Books.

Sumathi, S., & Sivanandam, S.N. (2006). Introduction to data mining and its applications. Berlin Heidelberg: Springer.

Wagner, W. (2008). The homogenization of the financial system and financial crises. Journal of Financial Intermediation, 17, 330-356. Doi: 10.1016/j.jfi.2008.01.001

Wagner, W. (2010). Diversification at financial institutions and systemic crises. Journal of Financial Intermediation, 19, 373-386. Doi: 10.1016/j.jfi.2009.07.002

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.

Witten, I. H., Frank, E., & Hall M.A. (2011). Data mining: Practical machine learning tools and techniques. Burlington: Morgan Kaufmann.

Zhao, Z., Zhang, W., & Shi, S. (2013) Common asset holdings and systemic risk of financial network. Procedia Computer Science, 17, 1010-1014. Doi: 10.1016/j.procs.2013.05.128

Detalles del artículo