
CHRISTINA DAWKINS 85

Rev. Econ. Ros. Bogotá (Colombia) 8 (2): 85-111, diciembre de 2005

Revista de Economía
del Rosario

Extended Sensitivity Analysis for Applied
General Equilibrium Models

Christina Dawkins*
Ministry of Finance, Government of British Columbia
Victoria, British Columbia, Canada

Recibido: febrero 2005 - Aprobado: abril 2005

Abstract. Previous sensitivity analysis procedures for applied general equilibrium models
have focussed on the values of exogenously assigned elasticity parameters, while the
calibrated parameters –those that are obtained from combining elasticity information
with flow or stock data–  have been largely ignored. Calibrated parameters are central to
a model’s specification, and uncertainty surrounding their values affects the credibility
of the model’s results. This paper introduces and illustrates a calibrated parameter
sensitivity analysis (CPSA) which, when combined with previous elasticity sensitivity
analysis procedures in an ‘extended sensitivity analysis’, allows modelers to undertake
sensitivity analysis over the full set of model parameters.
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Resumen. Los ejercicios de sensibilidad llevados a cabo hasta el momento acerca de
los parámetros utilizados por los modelos de equilibrio general aplicados se han
concentrado únicamente en la valoración de las elasticidades, ignorando completamente
aquellos obtenidos del mismo proceso de calibración. Dada la importancia de ambos
grupos de parámetros para la credibilidad de estos modelos, este artículo presenta e
ilustra un procedimiento para el análisis de los mismos.
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1. Introduction

Previous sensitivity analysis procedures for applied general equilibrium models
(Pagan and Shannon, 1985; Pagan and Shannon, 1987; Wigle, 1991; Harrison and Vinod,
1992; Harrison, Jones, Kimbell and Wigle, 1992; DeVuyst and Preckel, 1997) have fo-
cussed on the values of exogenously assigned elasticity parameters, while the cali-
brated parameters –those that are obtained from combining elasticity information with
flow or stock data– have been largely ignored.1  This omission stems partly from the
perception that whereas a model’s elasticity values are often obtained through in-
formed guesswork and can, therefore, be very uncertain, the calibrated parameter values
have a more solid empirical foundation in data. However, the considerable uncertainty
surrounding the data used for calibration introduces uncertainty into the calibrated
parameter values, making them also candidates for sensitivity analysis. This uncer-
tainty arises through measurement error and is augmented by the consistency adjust-
ments made to the data so that they meet the equilibrium conditions of the model.

The main difficulty for calibrated parameter sensitivity analysis lies in the require-
ment that the set of calibrated parameters be consistent with an observed “benchmark”
equilibrium. Unlike the exogenously specified elasticities, the set of calibrated param-
eters in an applied general equilibrium model is jointly determined by the benchmark
equilibrium data. A given perturbation to one calibrated parameter requires changes in
other parameters to ensure that the system remains a benchmark equilibrium but no
such realignment of the remaining parameters is unique and, therefore, no single change
to the model results can be determined from a given perturbation. Thus, the approach of
perturbing individual parameters to observe the effect on model results that has been
adopted in previous elasticity-based sensitivity analysis procedures is unsuitable for
sensitivity analysis with respect to a model’s calibrated parameters.

This paper proposes a calibrated parameter sensitivity analysis procedure (CPSA)
that circumvents the joint determination problem by conducting sensitivity analysis
over sets of calibrated parameters rather than individual parameter values. Central to
CPSA is that a matrix balancing algorithm provides a unique transformation from an
unbalanced data matrix into a benchmark equilibrium data set and, therefore, also
yields a fixed mapping from a given set of unbalanced data into a set of jointly
determined calibrated parameters. Unlike the elements of the benchmark data set, the
elements of the unbalanced data matrix are independent variables and can be indi-
vidually perturbed.

1 See Mansur and Whalley (1984) for a discussion of calibration.
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The CPSA methodology generates a random sample of unadjusted data matrices,
each comprised of perturbed elements of the original data matrix. Underlying CPSA is
the assumption that the elements of the unbalanced data matrix are observations of
stochastically independent random variables for which the modeler can determine a
priori distributions. Where these random variables are discretely distributed, the
support of their joint distribution forms the population of unadjusted matrices from
which the modeler samples. If the random variables in the data matrix are continu-
ously distributed, discrete approximations to their distributions are found using the
Gaussian quadrature methodology, which specifies discrete approximations that match
the lower order moments of the original distributions. The population from which
the modeler then samples is given by the support of the ensuing approximate dis-
crete joint distribution. Sampling from the support of a joint distribution allows the
modeler to attach a probability of being the true data matrix to each unadjusted matrix
in the sample.

A fixed algorithm transforms each sample matrix into a balanced benchmark equilib-
rium data set. The subsequent benchmark data sets map into corresponding sets of
calibrated model parameters that are used to solve the model. Each set of model results
is weighted by the probability attached to the unadjusted matrix used in its derivation.
From the sample, modelers can then determine confidence intervals for the solution
values. Thus, CPSA passes the modeler’s knowledge of uncertainty in the unbalanced
data, through the calibrated parameters and into a measure of robustness for the model
results. In doing so, it completes the framework for reporting the model’s sensitivity to
its full numerical specification.

This paper is organized as follows: Section 2 elaborates on calibration in applied
general equilibrium models and on the problems associated with sensitivity analy-
sis for calibrated parameters. Section 3 presents and illustrates the CPSA methodo-
logy using a simple applied general equilibrium model. Section 4 proposes and
applies an extended sensitivity analysis procedure in which CPSA is combined with
elasticity sensitivity analysis. The application examines the sensitivity of personal
tax incidence results in a model of Côte d’Ivoire due to Chia, Wahba, and Whalley
(1992) to the parameters calibrated from the consumption expenditure matrix and to
selected elasticities. Section 5 concludes with comments on the limitations of the
procedure.

2. The Framework for Calibrated Parameter Sensitivity Analysis

An applied general equilibrium model can be written as a system of m simultaneous
equations in which a vector of parameters, α, and a vector of exogenous variables, w,
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generate a vector of m endogenous variables, Y.2  This relationship can be expressed in
terms of a mapping,                       , such that3

( ), , 0.F =α w Y (1)

F can be considered to represent the chosen model structure, and α to summarize its
parameterization. To parameterize a given model, modelers must specify values for the
vector α . Ideally, they should be able to draw on econometric estimates with well defined
statistical properties to assign values to these parameters, but in practice the magnitude
of the data requirements make such an approach intractable.4  Instead, the values for
parameters, α̂ , are inferred from a set of known values for Y and w, Ŷ  and ŵ  that solve

( )ˆˆ ˆ, , 0.F =α w Y (2)

If the dimensionality of α  is greater than m, model parameterization becomes the
two stage process discussed in Mansur and Whalley (1984) and Shoven and Whalley
(1992). This procedure partitions the vector of parameters α  into two subsets: 1α , a set

of parameters that the modeler is free to specify exogenously, and 2α , the set of ‘cali-
brated’ parameters. If 1α̂  is the vector of exogenously specified values for 1α̂ , then
calibration yields values for 2α , 2α̂ , that ensure that for 1α̂  and ŵ  the model produces
Ŷ  as a solution. The vector of calibrated parameter values is a function of the exog-
enously specified parameters and the known solution:

( )2 1
ˆˆ ˆ ˆ, ,G=α α w Y , (3)

where G is an implicit function of F.5

2 In a simple applied general equilibrium framework, the vector Y includes an income for each
agent, a price for each commodity and factor, and an activity level for each production sector. Agents’
factor and commodity endowments are included in the vector w, while policy parameters (such as tax
rates), the CES elasticities of substitution, input shares and scale parameters in utility and production
functions comprise α . Each value in Y is associated with an equilibrium condition: equilibrium incomes
are values that satisfy budget balance constraints for agents; equilibrium prices satisfy market clearing
conditions for commodities and factors; equilibrium activity levels satisfy zero profit conditions in
production sectors. These equilibrium conditions also form the basis of the more sophisticated struc-
tures discussed in Shoven and Whalley (1992), including models with taxes, joint production, nested
functions, intermediate demands, decreasing returns to scale production and intertemporal frameworks.

3 A general equilibrium is characterized by a set of complementary slackness conditions where,
if equilibrium prices are zero, excess supply can be positive and where, if activity levels are zero,
excess profits can be negative. The discussion here is restricted to the case in which prices and
activity levels are strictly positive and the equilibrium conditions are satisfied with equality.

4 Tractability issues surrounding the econometric estimation of applied general equilibrium
models are discussed in Mansur and Whalley (1984). Econometrically derived model parameterizations
have been undertaken although the data requirements make such an approach rare. Examples include
Clements (1980), Jorgenson, Slesnick and Wilcoxen (1991), and McKitrick (1995).

5 Calibration can only be undertaken if the equations in G satisfy the conditions of implicit
functions, that is, if the equations of F are continuously differentiable with respect to Y, w, and ααααα and
if at Ŷ , ŵ  and 1α̂ , the determinant of the Jacobian matrix given by the derivatives of F with respect

to 2α , is non-zero.

: m mF →
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Once values for the calibrated parameters have been found, the vector of model
parameter values α̂ , and the exogenous variables ŵ , can be used in (2) to solve for Y in
a “replication test.” If the solution values for Y are the same as Ŷ , the calibration
procedure has found parameters that are consistent.6

Sensitivity analysis is a means of characterising the robustness of model results to
uncertainties in this model parameterization process. Typically, the choice of 1α̂  is
surrounded by a high degree of uncertainty.7  In response to this uncertainty, sensitivity
analysis procedures that vary the values of 1α  to observe the effect on model results,
have been developed.8

Ideally, a sensitivity analysis procedure directed towards the vector of calibrated
parameters, 2α , should also examine the link between the parameter values and the
model results directly.9  This approach, however, is infeasible. The calibrated parameters
cannot be individually perturbed because they are jointly determined through the re-
quirement that the known values from which they are derived, ŵ  and Ŷ , satisfy the
equilibrium conditions of the model; a change to any single calibrated parameter would
require other calibrated parameters to change in order to preserve the equilibrium sys-
tem. Since many such adjustments are possible, no unique effect on model results can
be observed from a specific change to a single calibrated parameter.

The joint determination of the calibrated parameters is more evident if the vectors

ŵ  and Ŷ  are transformed into a square transactions matrix, termed a “benchmark
equilibrium data set” (BED). In the BED, a row, representing receipts, and a column,
representing outlays, are assigned to each market, production sector, and agent de-
fined in the model. If the Harberger (1962) convention is adopted whereby units trans-

6 Policy analysis is then undertaken by perturbing some of the model parameters, computing
a new equilibrium and comparing the subsequent vector of endogenous variables to the base case
vector. The perturbation of the model parameters captures proposed policy changes such as a change
in a tax rate, or the removal of a quota. The counterfactual solution is the measure of the effects of
the new policy scenario. It predicts how the economy is likely to respond to the change in the policy
regime, while the model’s base case or pre-change solution is the observed outcome from the
economy under the existing policy regime.

7 The vector 1α  is comprised largely of elasticities of substitution and transformation. The
values for these elasticities are obtained, where possible, from literature based econometric estimates
but such estimates are scarce and dated. Modelers occasionally undertake their own estimation for
these values. Typically, the number of elasticities in an applied general equilibrium model is prohibi-
tively large, and insufficient data exists for their estimation. As a result, modelers often derive
elasticity values using ‘best guesses.’

8 Elasticities are not the only exogenous parameters for which sensitivity analysis has been
undertaken. Rutström (1991), for example, conducts sensitivity analysis over the values of the
minimum requirement parameters in a linear expenditure system.

9 In so far as the calibrated parameters are functions of the exogenously specified parameters,
previous sensitivity analyses capture some of the uncertainty in 1α . The approach here, however,
provides a framework for addressing the full uncertainty in the calibrated parameter values.
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acted are defined as the quantity that sells for one unit of currency, the equilibrium
conditions of the model are reflected in a ‘biproportionality’ condition for the BED: the

BED must satisfy the condition that for a square matrix ijx   ,

.ij ijj i
x x i j= ∀ =∑ ∑ (4)

Biproportionality ensures that budget balance holds for agents (incomes equal
expenditures), sectors make zero profits (sales equal production costs), and because
prices are unity, markets clear (quantities demanded equal quantities supplied).

A model’s calibrated parameters are functions of ratios of elements of the BED so
that, for example, shares of commodity c where c = 1,...,C in the consumption of agent q

are calculated from the ratio of xcq to 
1

C
cqc

x
=∑ . Perturbing one calibrated parameter is

equivalent to changing a ratio or element in the BED. Changing one off-diagonal ele-
ment violates the matrix biproportionality condition, and for calibration, the modeler
must rebalance the perturbed matrix into a BED.10  This rebalancing process, however, is
not unique.

For example, consider a model with a fixed labour endowment and several produc-
tion sectors. If the modeler wishes to observe the effects on model results of changing
the input share of labour in one production sector, such an input share in at least one
other sector would also have to change to maintain the base-period equilibrium condi-
tion that the labour market clears. The modeler, however, has no way of determining
which of the remaining production sectors should absorb this change. Because several
options exist for meeting the model’s consistency requirements, and because each
could lead to a different model result, the initial perturbation does not lead to a unique
change in the model results. Sensitivity analysis for the input share of labour in a single
production sector is, therefore, impossible. A similar argument holds for any individual
calibrated parameter value.

Unlike the elements of the BED, however, the unadjusted data has no consistency
restrictions on the values it can assume. The following section describes a calibrated
parameter sensitivity analysis that circumvents the problem of joint determination by
perturbing the raw data set from which the calibrated parameters are derived. The proce-
dure allows modelers to observe the effect on model results of varying the entire vector of
calibrated parameters, rather than of perturbing individual elements of that vector.

10 Changing the ratio of a diagonal element of the BED would preserve the biproportionality
condition since rows and columns would be affected equally. Diagonal elements in the BED, however,
denote transactions from an agent, a market, or a sector to itself. Since such transactions are devoid
of behavioral significance in an applied general equilibrium model, the diagonal elements of the BED
are defined to be zero.
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3. Calibrated Parameter Sensitivity Analysis

Calibrated parameter sensitivity analysis is addressed by turning to the derivation
of the BED from a matrix of initial, unbalanced estimates.11   The derivation of the BED
falls into the class of matrix balancing problems in which an initial, unbalanced matrix is
transformed into a balanced matrix that satisfies a set of linear restrictions and is close
to the original matrix under some metric. Many algorithms exist for undertaking such
matrix balancing procedures and the modeler must choose among these to derive the
BED.12  In the sensitivity analysis developed here, the adjustment algorithm remains
constant, but data used as inputs into that algorithm are perturbed. The calibrated
parameter sensitivity analysis maps perturbations in the data through the fixed adjust-
ment algorithm, the resulting BED, the configuration of calibrated parameters, and ulti-
mately into the model results.13

3.1. The CPSA Methodology

The general approach for the calibrated parameter sensitivity analysis procedure is
one of randomized sampling over alternative values of the initial raw data matrix. Ran-
domized sampling, the approach developed for elasticity sensitivity analysis in Harrison
and Vinod (1992), avoids the prohibitive computational requirements of unconditional
systematic sensitivity analysis discussed in Wigle (1991). It has the additional advan-
tage over the Pagan and Shannon (1985; 1987) sensitivity procedure of providing glo-
bal rather than local analysis, which strengthens sensitivity results for non-linear models
with large uncertainties in the parameter values. The CPSA procedure employs Gaussian
quadrature to find a discrete population of matrices from which to sample, following the
sensitivity methodology used for elasticity parameters in DeVuyst and Preckel (1997).
Unlike the discrete approximation methodology employed in Harrison and Vinod, Gaussian
quadrature ensures that the moments of the sampling distribution match those of the
underlying distribution.14

11 The derivation of the matrix of unbalanced estimates itself can be a lengthy process.
Modelers typically begin with data from disparate sources of varying quality. The data within each
source may also vary in its reliability. Modelers are faced with missing values, conflicting data, and
with measurement classifications that are inappropriate to the model.

12 Günlük-ªenesen and Bates (1988) summarize the general approaches.
13 The sensitivity of model results to alternative BEDs has been undertaken elsewhere. Roberts

(1994) examines the effects the choice of benchmark year for the BED. Adams and Higgs (1990)
argue for the use of a synthetic ‘typical’ BED rather than one derived from a particular year of
record. Wiese (1995) derives two BEDs using alternative accounting assumptions for employer
contributions to health insurance and traces the effects of these assumptions on model results. These
all argue for particular structures of the BED rather than providing a systematic sensitivity analysis
of the type proposed here.

14 See DeVuyst and Preckel (1997) for a comparison of the two methods.
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The CPSA is a procedure in which the data in the initial matrix are considered observa-
tions of random variables for which the modeler can determine a priori distributions.
Where these distributions are continuous, each is approximated by a set of discrete
points and associated probabilities. Together, the distributions form a discrete approxima-
tion to the joint distribution for the set of variables comprising the data matrix. A sample of
unbalanced data sets is drawn randomly from the joint distribution. Each unbalanced data
set in the sample is balanced using a constant adjustment algorithm, resulting in a series
of BEDs, each of which is then used to calibrate and solve the model.

Let the vector X, with elements xj, j = 1,..., N, be the vector of data elements required
to calibrate an applied general equilibrium model, so that this vector includes all the
data variables for which the modeler must specify values. Let the vector A  with ele-
ments ja  be the best initial estimate of X. The CPSA is a procedure in which the xj are
viewed as random variables, and the ja  as realizations from the probability density
functions of the xj. The CPSA methodology is comprised of the following four steps.

Step 1. Specification of the a priori distributions for the xj

The modeler specifies an a priori distribution for each xj, denoted here by {xj},
where {xj} is the probability density function if xj is a continuous random variable, and
the probability mass function if xj is a discrete random variable. For the purposes of
simplicity, the xj are assumed to be independently distributed. The random variable xj

must have finite moments, and the support of {xj} must be consistent with the
model structure. Because the ja  are assumed to be the best initial estimates for xj in
the specified distribution, E(xj) = ja , the variance, E(xj - ja )2, will be informed by the
reliability of the data sources as well as the prior modifications undertaken to generate
the unadjusted data.

Step 2. Discrete specification of the continuous {xj}

In step 2, a discrete approximation is found to each continuous {xj}, where the
discrete approximation is comprised of K pairs of points, âj

k, k = 1, ..., K, and probabili-
ties pj

k, such that 1k
jk

p =∑ . A discrete approximation is obtained using Gaussian
quadrature. For each xj, Gaussian quadrature chooses K pairs (âj

k, pj
k) such that

( ) ( )
1

ˆ
K l lk k

j j j
k

p a E x
=

=∑ , (5)

where l = 0, 1, ...., 2K-1 are the moments of {xj}.
The Gaussian quadrature approximation is found as follows (see Miller and Rice,

1983; Preckel and DeVuyst, 1992). For each j, the modeler first solves the linear system
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of K equations, where the mth equation, m = 1,..., K, (and dropping the j subscript) is
given by

1
1 1

0

( ) ( )
K

l m K m
l

l
c E x E x

−
+ − + −

=

= −∑ ,  (6)

for the coefficients cl. The solution values for the cl are then substituted into the
polynomial

( )
0

0
K

l
l

l
c E x

=

=∑ , (7)

and its roots are found. These roots are the âj
k points for discrete approximation.

The final step is to find the probabilities for the âj
k. These are given by solving equation

(5) for the values of the pj
k.

Two, three and four point discrete approximations arising from applying Gaussian
quadrature to uniform, normal and exponential distributions are given in Miller and Rice
(1983), and these provide the discrete approximations employed in the examples of the
CPSA that follow.15  As an example, let the raw data vector be

A = [1  2]
where element 1a  is distributed N(1, 0.02), and element 2a  is distributed N(2, 0.04).

A three point Gaussian quadrature would approximate the distribution for 1a  by the
three point and probability pairs

(â1
1 = 0.755, p1

1 = 0.1667)
(â1

2 = 1.000, p1
2 = 0.6666)

(â1
3 = 1.245, p1

3 = 0.1667)
and 2a  by
(â2

1 = 1.654, p2
1 = 0.1667)

(â2
2 = 2.000, p2

2 = 0.6666)
(â2

3 = 2.346, p2
3 = 0.1667).

Step 3. Construction of a joint distribution

The joint distribution for the elements of X, denoted here by {X}, is derived from
probability mass function representations of the elements in X. If the a priori distribu-
tions are discrete, these probability mass functions are simply the {xj}, whereas if the a
priori distributions are continuous, the probability mass functions are given by the
Gaussian quadrature discrete approximations to the {xj}. Let each xj have a probability
mass function representation with K point and probability pairs. The joint distribution
(see Preckel and DeVuyst, 1992) is given by the NK vector and probability pairs:

15 Other procedures for undertaking more complicated Gaussian quadratures are cited in DeVuyst
and Preckel (1997).
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{ } 1 2
1 2 1 2

1

ˆ ˆ ˆ, ,..., , 1,..., ; 1,..., ;...; 1,..., .jN

N
kkk k

N j N
j

a a a p k K k K k K
=

 
 = ∀ = = =  

 
∏X (8)

Where the xj are discretely distributed, {X} is the true joint distribution. If {X} is
formed from Gaussian quadrature approximations to continuous probability density
functions for the xj, the joint distribution also preserves up to and including the 2K-1
moments of the original, continuous joint distribution. Because this joint distribution is
formed under the assumption of stochastic independence of the xj, the covariances and
higher order cross-moments are zero.16

The joint distribution for the above example would consist of the nine vector and
probability pairs:

([â1
1, â2

1] = [0.755, 1.645],p1
1p2

1 =  0.0278)
([â1

1, â2
2] = [0.755, 2.000],p1

1p2
2 =  0.1111)

([â1
1, â2

3] = [0.755, 2.346],p1
1p2

3 =  0.0278)
([â1

2, â2
1] = [1.000, 1.645],p1

2p2
1 =  0.1111)

([â1
2, â2

2] = [1.000, 2.000],p1
2p2

2 =  0.4444)
([â1

2, â2
3] = [1.000, 2.346],p1

2p2
3 =  0.1111)

([â1
3, â2

1] = [1.245, 1.645],p1
3p2

1 =  0.0278)
([â1

3, â2
2] = [1.245, 2.000],p1

3p2
2 =  0.1111)

([â1
3, â2

3] = [1.245, 2.346],p1
3p2

3 =  0.0278).

Step 4. Sampling

If NK is sufficiently small, a simple random sample is taken from the points in the
support of {X} by labeling each point with an integer in the interval [1, 2,..., NK] and
drawing a simple random sample from that interval. If NK is large and a simple random
sample cannot be easily generated, random sampling from the support of {X} is achieved
using the completely randomized factorial sampling design used in Harrison and Vinod
(1992): each point in the sample is generated by randomly selecting its elements from
the supports of the discrete representations of the {xj}, so that a sample data set is
generated by randomly selecting from the values [ âj

1, âj
2, ..., âj

K] for each j = 1,..., N.
In the above example, the modeler would construct a random perturbed data set by

first choosing randomly from the three possible values for the first data element:

16 The assumption of stochastic independence for such data is supported in applications of the
Stone-Byron adjustment algorithm in the social accounting literature, which requires an a priori
specification of the variance-covariance matrix for a social accounting matrix. For an example, see
Crossman (1988). CPSA can, in principle, be extended to the case where elements of X are jointly
distributed. Preckel and DeVuyst (1992) give a Gaussian quadrature joint distribution for the case in
which the xj are joint normally distributed.
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1
1ˆ 0.755a = , 2

1ˆ 1.000a = , and 3
1ˆ 1.245a = , and then choosing randomly from the three

possible values for the second data element: 1
2ˆ 1.654a = , 2

2ˆ 2.000a = , and 3
2ˆ 2.346a = .

Let St be a random vector from the support of {X}, and let Pt be the probability mass
of St. The modeler applies the same adjustment algorithm to St as was applied to the
original unbalanced data set, A , to generate a BED. The BED is then used to calibrate and
solve the model. Let Rt denote the vector of model results arising from the unbalanced
data vector St.

The process is repeated T times to generate a sample of model results. The sample
size must be sufficiently large that the sample moments are consistent estimators of the
population moments. To ensure that all vectors in the support of {X} have the same
probability of being sampled, sampling is undertaken with replacement, allowing the
possibility that the same vector may be drawn more than once. Each Rt, t = 1,..., T, is
weighted by Pt to find the expectations, standard deviations, and confidence intervals
for the model results.

3.2. An Illustration of the CPSA Using a Simple Tax Model

The Shoven and Whalley (1984) simple 2×2×2 model, with two consumers (rich and
poor), two factors of production (capital and labour), and two commodities (manufac-
tured and non-manufactured goods), is used to illustrate the CPSA. Table 1 summarizes
the model structure. The base case version of the model has no taxes. In the
counterfactual experiment, a 50 percent tax is levied on the use of capital in the manufac-
turing sector, resulting in welfare changes for both consumers. These welfare changes,
measured by the Hicksian equivalent variation as a proportion of base income, provide
the basis for the sensitivity analysis.
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Table 1. Structure of the Tax Model Used to Illustrate the CPSA
Production • Output is produced using capital and labour combined in 

proportions implied by CES technology in each sector. 
• The elasticity of substitution in the production of 

manufactured goods is 2.0 and in that of non-
manufactured goods, 0.5. 

• Share parameters for the CES function are calibrated 
from the BED. 

Consumption • The utility of each consumer is a CES function of 
manufactured and non-manufactured goods. 

• The rich consumer's utility function has an elasticity of 
substitution of 1.5 and the poor consumer's has one of 
0.75. 

• Share parameters for the CES function are calibrated 
from the BED. 

Endowments • The rich consumer is endowed with capital and the poor 
consumer with labour. 

Equilibrium Conditions •  Markets clear for all goods and factors. 
•  Zero profits are made in each sector. 
•  Each consumer's expenditure equals his/her income. 

Counterfactual • A 50 percent tax is levied on the use of capital in the 
production of manufactured goods. 

• The rich consumer receives 40 percent of tax revenues 
and the poor consumer receives 60 percent. 

• Welfare changes for each consumer are measured by 
equivalent variation as a proportion of base income: EVi 
= (Ui

c - Ui
b) / Ui

b where Ui
b is the utility of consumer i, i 

= {rich, poor}, in the base case and Ui
c is utility after the 

imposition of the tax. 

17 The choice of a uniform distribution is arbitrary, but the value for the standard deviation is
roughly consistent with data. A time series of annual values for value added in manufacturing for the
United States was found to have a standard deviation of 10.2 percent. The time series was constructed
using annual data for 1970 to 1992 taken from the International Bank for Reconstruction and
Development (1993) data base. The series “value added in manufacturing” given in current USD was
deflated by the ratio of current USD to constant 1985 USD GDP at factor cost to generate a constant
value series.

The initial, unbalanced data set used for this model is given in Table 2. It is derived
by choosing a random value from a uniform distribution in which the expected value of
each data point is the value used in Shoven and Whalley (1984), and the standard
deviation is ten percent of the Shoven and Whalley value.17  The adjustment algorithm
used to balance the data is the commonly used constrained quadratic minimization
algorithm in which each term is weighted by the unadjusted data value. Thus, if  ja ,
j =1,..,10, denotes each of the ten unbalanced, non-zero data values in Table 2, this
algorithm finds balanced values, jq , such that the expression ( )( )2

j j jj
−∑ q a a  is

minimized subject to the constraints of the specific experiment.
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Two sets of experiments, each of which imposes different constraints on the adjust-
ment algorithm, are performed to illustrate the CPSA procedure. The first set assumes
that the modeler knows with certainty the aggregate incomes, demands and outputs in
the economy, and that they are the values used by Shoven and Whalley. These ‘known’
control totals are given in the final section of Table 2. In this case, the constraints on
the adjusted data are that the adjusted endowments equal the known endowments, that the
sum of demands for each good equals the known value for the output of each sector,
and that the sum of the input demands for each factor equals the value of the known
total endowment for each factor.

The second set of experiments assumes that these totals are unknown. In this case,
the adjustment constraints are simply that the data meet the equilibrium conditions of the
model: markets clear, sectors make zero profits, and the households exhibit budget
balance. Both sets of balanced data are given in Table 3, together with the central case
welfare results. The robustness of these equivalent variations to uncertainty in the
initial data is the focus of the CPSA exercise.

Table 2. Unbalanced Transactions Values for the Illustrative Tax Model
(in units of currency)

1. Consumption by Households 
 Goods 
 Manufactures Non-Manufactures 
Rich 17.2 25.8 
Poor 22.0 52.7 
2. Factor Demands by Sector 
 Sectors 
 Manufactures Non-Manufactures 
Capital 7.1 30.4 
Labour 34.0 56.6 
3. Factor Endowments 
 Factors 
 Capital Labour 
Rich 48.3 0.0 
Poor 0.0 59.0 
Note: Values were derived as random numbers drawn from uniform distributions with 
means equal to the Shoven and Whalley (1984) balanced values and standard deviations 
equal to 10 percent of those balanced values. 
Known Totals (values used in the Shoven and Whalley (1984) model) 
Rich Household's Endowment of Capital 34.3 
Poor Household's Endowment of Labour 60.0 
Total Demand for Capital 34.3 
Total Demand for Labour 60.0 
Total Output of Manufactured Goods 34.9 
Total Output of Non-Manufactured Goods 59.4 
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 Table 3. Balanced Data and Central Case Model Results for the Illustrative Tax Model

Case 1: Benchmark Values for Data Balanced Using Known Totals 
 Value in units of currency 
Rich Consumption of Manufactured Goods 15.1 
Rich Consumption of Non-Manufactured Goods 19.2 
Poor Consumption of Manufactured Goods 19.8 
Poor Consumption of Non-Manufactured Goods 40.2 
  
Input of Capital to the Manufacturing Sector 7.7 
Input of Labour to the Manufacturing Sector 27.2 
Input of Capital to the Non-Manufacturing Sector 26.6 
Input of Labour to the Non-Manufacturing Sector 32.8 
  
Capital Endowment of the Rich Consumer 34.3 
Labour Endowment of the Poor Consumer 60.0 
  
Hicksian Equivalent Variation from a 50 % tax on Capital in Manufacturing 
 proportion of base income 
Rich Consumer's EV (proportion of base income) -0.1223 
Poor Consumer's EV (proportion of base income) 0.0610 

Case 2: Benchmark Values for Data Balanced Using Equilibrium Constraints 
 value in units of currency 
Rich Consumption of Manufactured Goods 16.3 
Rich Consumption of Non-Manufactured Goods 26.0 
Poor Consumption of Manufactured Goods 20.5 
Poor Consumption of Non-Manufactured Goods 52.1 
  
Input of Capital to the Manufacturing Sector 8.3 
Input of Labour to the Manufacturing Sector 28.5 
Input of Capital to the Non-Manufacturing Sector 34.0 
Input of Labour to the Non-Manufacturing Sector 44.1 
  
Capital Endowment of the Rich Consumer 42.3 
Labour Endowment of the Poor Consumer 72.6 
  
Hicksian Equivalent Variation from a 50% tax on Capital in Manufacturing 
 proportion of base income 
Rich Consumer's EV (proportion of base income) -0.1126 
Poor Consumer's EV (proportion of base income) 0.0572 

In the first step of the CPSA, uniform distributions are specified for the initial data
elements, where the expected value of each data element is given by the central unad-
justed data value in Table 2 and its standard deviation is ten percent of that value.18  The
second step of CPSA uses Gaussian quadrature to find discrete approximations to

18 Although the data generating process for the economy in this example has been specified to
generate the unbalanced data set in Table 2, it would be unknown for a modeler undertaking CPSA. Here,
the modeler has correctly specified the shape of the distribution, and the proportional magnitudes of the
variances, but has the expectation that the error of the initial estimate is zero which, of course, it is not.
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these continuous distributions. In this example, they are represented by the three-point
approximations given in Table 4, which preserve up to and including the fifth moments
of the original distributions.

The discrete approximations to the distributions for the individual data elements are
then used to characterize the joint probability density function. The support of this
joint distribution is given by the combinations arising when each of the ten data ele-
ments assumes one of the three values in the support of its discrete distribution. The
result is a set of 103 possible configurations, each of which has a probability of being
true given by the product of the probabilities of its ten constituent points.

Table 4. 3 Point Discrete Gaussian Quadrature Approximations for the Assumed
Continuous Data  Distributions in the Illustrative Model

(values in units of currency)

Note: Pr. denotes probability.

A random, unadjusted data configuration is drawn from this support. This data
configuration is derived by choosing randomly from the three point discrete distribu-
tion for each data element. For example, the three points in the distribution for the rich
consumer’s endowment of capital are 41.8, 48.3 and 54.7. The data configuration is
constructed by randomly choosing one of these three values, then randomly choosing

 Expected Value and 1st Point 2nd Point 3rd Point 
 Bounds of the Assumed Pr.: 0.278 Pr.: 0.444 Pr.: 0.278 
 Uniform Distribution    
Rich Consumption of 
Manufactured Goods 17.2  [14.2, 20.1] 14.8 17.2 19.5 

Rich Consumption of 
Non-Manufactured 
Goods 

25.8  [21.3, 30.3] 22.3 25.8 29.3 

Poor Consumption of 
Manufactured Goods 22.0  [18.2, 25.8] 19.1 22.0 25.0 

Poor Consumption of 
Non-Manufactured 
Goods 

52.7  [43.6, 61.9] 45.7 52.7 59.8 

     
Input of Capital to 
Manufacturing Sector 7.1   [5.8, 8.3] 6.1 7.1 8.0 

Input of Labour to 
Manufacturing Sector 34.0  [28.1, 39.9] 29.5 34.0 38.6 

Input of Capital to Non-
Manufacturing Sector 30.4  [25.2, 35.7] 26.3 30.4 24.5 

Input of Labour to Non-
Manufacturing Sector 56.6  [46.8, 66.4] 49.0 56.6 64.2 

     
Capital Endowment of 
Rich Consumer 48.3  [39.9, 56.6] 41.8 48.3 54.7 

Labour Endowment of 
Poor Consumer 59.0  [48.8, 69.2] 51.1 59.0 66.9 
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one of the three possible values for the poor consumer’s endowment of labour, and so
on until a random value has been chosen for each of the ten data elements. The
probability associated with the configuration is given by the product of the probabili-
ties of its ten constituent data elements.

This process is repeated to generate a sample of fifty unadjusted data configura-
tions. In the first experiment, each configuration is then adjusted into a BED using the
known totals as constraints, and the model is calibrated and solved. Attached to each
result is the probability that the configuration used in its derivation is true. The process
is the same in the second experiment, except the data are adjusted using only the
model’s equilibrium conditions as the balancing constraints.

Table 5 presents the summary statistics that characterize the output of the CPSA
sensitivity procedure. It gives the means, standard deviations and 95 percent confidence
intervals for the results of both experiments undertaken in this illustrative example. From
Table 5, the modeler could conclude that the model results are robust to the uncertainty
in the initial data values: the signs of the welfare changes are preserved, and the central
case variants lie well inside the 95 percent confidence interval. Where the control
totals are known, the standard deviations of the results are lower than where the
model’s equilibrium conditions alone provide the underlying adjustment consistency
constraints. This result is consistent with the additional information introduced into
the system by known totals.

Table 5. CPSA on the Welfare Effects of Imposing a 50 Percent Tax on the Use of Capital
in the Manufacturing Sector Hicksian Equivalent Variations Measured

as a Proportion of Base Income

Note 1: The central case uses the raw data given in Table 3.2.
Note 2: Confidence intervals are derived using Chebychev’s Theorem

Case 1: Data Balanced Using Known Control Totals 
 Central Mean Standard 95% Confidence 
 Case1  Deviation Interval2 

EV Rich -0.1223 -0.1219 0.0095 [-0.1644, -0.0794] 
EV Poor 0.0610 0.0609 0.0050 [0.0385, 0.0833] 
     
Case 2: Data Balanced Using Equilibrium Constraints 
 Central Mean Standard 95% Confidence 
 Case1  Deviation Interval2 

EV Rich -0.1126 -0.1117 0.0097 [-0.1551,-0.0683] 
EV Poor 0.0572 0.0572 0.0055 [0.0326,0.0818] 
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4. Extended Sensitivity Analysis

While CPSA allows modelers to undertake sensitivity analysis with respect to the
values of the  calibrated parameters, the elasticity parameters remain a highly uncertain
component of the modeling process. The ‘extended sensitivity analysis’ proposed in this
section combines CPSA with the existing elasticity sensitivity analysis methodology
advocated in DeVuyst and Preckel (1997), so that modelers can report the sensitivity of
their model results to uncertainty in all of the model’s parameters.

4.1. Extended Sensitivity Analysis Methodology

The extended sensitivity analysis methodology requires a simple modification to
the CPSA procedure described in Section 3. Instead of specifying a priori distributions
just for the initial data elements, distributions are specified for both the initial data and
for the exogenous elasticity parameters. Thus, if N is the number of data elements, and
J is the number of exogenously specified parameters, the modeler must specify (N+J)
probability distributions. The conditions that apply to the distributions for the data in
CPSA also apply to the elasticities in extended sensitivity analysis: they must have
finite moments, and the model must be solvable over their supports.

The remaining steps in extended sensitivity analysis follow those in CPSA, except
they apply to both the initial data and to the elasticities. Gaussian quadrature is used to
construct discrete approximations to the continuous distributions of both the data and
the elasticities, and a joint distribution of the data and elasticities is created from these
discrete approximations. If K is the number of points in the support of each discrete
distribution, the joint probability density function contains (N+J)K points. Each point in
the support of the joint distribution is comprised of an unadjusted data set and a set of
elasticity values. Its probability mass is given by multiplying the product of the N
probabilities of its unadjusted data values with the product of its J elasticity probabilities.

Random samples, each of which is comprised of an unbalanced data and a set of
elasticity values, are then drawn from the joint distribution. As in CPSA, the data
component of each random sample is constructed by sequentially choosing a random
value for each data element from the K values in the support of its individual discrete
distribution. Similarly, the elasticity component of the random sample is derived by
sequentially selecting a random value for each elasticity from the K values in the sup-
port of its distribution.

The data in each sample are balanced by applying the same adjustment algorithm as
was applied to the central case data. Together with the elasticities in the sample, the
balanced data are then used to calibrate and solve the model. Means, standard devia-
tions and confidence intervals for the true model results are calculated from the
probability weighted sample model results, as in CPSA.
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4.2. An Illustration of Extended Sensitivity Analysis: The Côte d’Ivoire Model

This extended sensitivity analysis methodology is illustrated using an existing model
developed by Chia, Wahba, and Whalley (1992) for tax incidence analysis in Côte
d’Ivoire. While the simple Shoven and Whalley example was chosen to illustrate CPSA
in Section 3 on the basis that its small dimension offers transparency, the Côte d’Ivoire
model is used to illustrate extended sensitivity analysis because it typifies the policy
modeling exercises for which such sensitivity analyses are important.

The attempt here at realism is hampered by a lack of knowledge about the unad-
justed data and the reliability of the elasticities actually used in the Côte d’Ivoire
model. The lack of such information means that several assumptions about the data,
elasticities and data adjustments are made in the illustration of extended sensitivity
analysis that follows.  This obstacle, however, is not unique to the Côte d’Ivoire
model. In practically all cases, the information required to undertake extended sensi-
tivity analysis is not available to anybody other than the original modeler, and usu-
ally this information has been discarded early in the modeling process. Typically,
modelers have no use for unadjusted data; they report only the adjusted version of
the data and the central case elasticities. Extended sensitivity analysis, therefore,
also has normative implications for modelers: they must maintain a version of the
unadjusted data, record their assessment of the reliability of both the unadjusted
data and of the elasticities, and report their adjustment procedure in detail if extended
sensitivity analysis is ever to be undertaken.

The incidence analysis in Chia, Wahba, and Whalley is undertaken for six taxes/
subsidies by replacing each with an equal yield, neutral tax on consumption, and find-
ing the associated welfare change for each of seven household types. The exercise that
follows examines the sensitivity of the personal income tax incidence results to uncer-
tainty in the consumption expenditure data and in the values of the consumption and
production elasticities of substitution.

The welfare changes on which the Chia, Wahba and Whalley tax incidence results
are based, derive from household utility functions that are defined over the consump-
tion of goods and services in the model.19  The data-based component of the extended

19 The Côte d’Ivoire model identifies seven socio-economically based household types, each of
which receives utility from the consumption of ten goods and services. Incomes derive mainly from
capital and labour endowments, as well as interhousehold transfers. Households pay personal income
tax and make social security transfers to the government, but also receive income from the govern-
ment in the form of education and other transfers. The model distinguishes fifteen production
sectors, each of which produces output using value added and intermediate goods. All twelve formal
sectors pay production taxes and all formal sectors, except the government services sector and the
gas, electricity and water sector, also receive subsidies. Eight of the formal production sectors trade
internationally, and since Côte d’Ivoire is modeled as a small, open, price-taking economy, exporters
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sensitivity analysis is undertaken for this consumption expenditure data. Changes in
utility arise directly from changes in consumption levels, but the extent to which a
change in the consumption of a particular good translates into a change in utility is
determined by the share parameter of that good in the CES utility function. Through
calibration, the values of the consumption expenditure data (together with the elasticity
of substitution in consumption) determine the values of these share parameters.

The consumption data are assumed to have been obtained from a household sur-
vey that reports mean consumption by household type, and Chia, Wahba, and Whalley
are assumed to have derived an unbalanced estimate of total consumption expenditure
by each household type from scaling the survey data by the number of households in
each group. Because the actual household survey data are unknown, they are approxi-
mated by the artificially constructed household survey data given in the Appendix in
Table A.1. The elements of this artificial data set are randomly drawn from a normal
distribution with an expected value equal to the known, adjusted value used by Chia,
Wahba, and Whalley, and a standard deviation equal to the proportions of the base
case noted in Table A.1.20

The balanced values of the consumption expenditure data for the Côte d’Ivoire
model are assumed to have been derived in a two stage process. In the first stage,
aggregate values for the total final household consumption of each good consistent
with the values for total production, exports, government consumption and intermedi-
ate demand would have been found. These values are assumed to be the totals used by
Chia et al. and are given in the second section of Table A.2. Similarly, aggregate house-
hold consumption expenditure would have been specified. These values are presented
in the first section of Table A.2, and are also the values used in the original model. In the
second stage, an adjustment algorithm would have been applied to the initial, unbalanced
consumption data under consistency conditions implied by the aggregate values from
the first stage.

The unbalanced data in Table A.1 are scaled by the number of households of each
type given in Table A.3, and are then adjusted using the prevalent RAS adjustment
algorithm, where the consistency constraints are that i) the total consumption of each

face a perfectly elastic demand function for their output. Traditional exports and exports of primary
processed goods are taxed. Imports, used in the production of intermediate goods and in household
consumption, are subject to tariffs. The Ivorian price stabilization policy for coffee, cocoa and other
exports is captured in the model. In 1986, the benchmark year, the fund experienced a net inflow of
revenues and thus the traditional export sector pays into the stabilization fund, while the non-
traditional export sector receives only a proportion of those revenues.

20 Chia, Wahba, and Whalley list their primary data sources as the national accounts, the
Banque de données financières (the financial database from which balance of payments data was
obtained), tax data and household budget survey data, but do not state explicitly which elements of
the BED derive from which source. As a result, the sensitivity analysis presented here provides an
illustration of the methodology rather than insight into the specific Côte d’Ivoire model results.
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good by each household type, summed across household types is equal to the aggre-
gate final household consumption for that good from section 2 of Table A.2, and ii)
the sum across goods of total consumption expenditure by household type is equal
to the disposable income of each household type, net of interhousehold transfers and
savings, given in section 1 of Table A.2.21

Together with the original elasticity values, the resulting balanced matrix is used to
calibrate and solve the model to obtain incidence results for the removal of the personal
income tax. These central case results are given in column (1) of Table 6. Their robust-
ness to uncertainty in the values of the initial household consumption data in Table A.1
as well as to uncertainty in the central case values of selected production and con-
sumption elasticity values is the focus of the subsequent sensitivity analysis.

Table 6. Extended Sensitivity Analysis Results for Personal Income Tax Incidence
in a Model of Côte d’Ivoire

Hicksian Equivalent Variation as a Percentage of Benchmark Gross Income

Note: Confidence intervals are derived using Chebychev’s Theorem.

The illustration of extended sensitivity analysis presented here considers the un-
certainty in the calibrated parameters given by the consumption expenditure matrix
together with uncertainty in the values of three sets of elasticities used in CES func-
tions in the model; the elasticity of substitution of consumption goods in preferences,22

 Central Expected Standard 95% Confidence 
 Case Value Deviation Interval 
 (1) (2) (3) (4) 
Export Croppers -0.224 -0.214 0.013 [-0.272, -0.156] 
Savannah Croppers -0.685 -0.690 0.019 [-0.775, -0.605] 
Other Food Croppers -1.600 -1.603 0.020 [-1.692, -1.514] 
Government Employees 3.493 3.490 0.009 [3.450, 3.530] 
Formal Households -0.605 -0.607 0.007 [-0.638, -0.576] 
Small Businesses -1.617 -1.614 0.006 [-1.641, -1.587] 
Inactive 2.666 2.661 0.015 [2.594, 2.728] 

21 Let the unbalanced data be represented in the matrix form of Table A.1, so that the element
ija  denotes the expenditure by household j on good i, and let the total consumption of each product

be given in the first section of Table A.2, and the total expenditure by household be given in the
second section of Table A.2. The RAS algorithm, attributed to Bacharach (1970) is a scaling algo-
rithm in which each row of the initial matrix is scaled by the ratio of the known row total (section
1 of Table A.2) to the actual total. The columns of the ensuing updated matrix are scaled by the ratio
of the known column totals (section 2 of Table A.2) to the updated matrix column totals. This
process is applied iteratively until the deviation of the updated matrix totals from the control totals
is deemed to be sufficiently close to zero.

22 In the central case, these are all 1 implying Cobb-Douglas preferences for households.
Sensitivity analysis with respect to this value can therefore also be interpreted as sensitivity over the
choice of functional form.
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the Armington elasticity of substitution between domestic and imported goods in con-
sumption, and the elasticity of substitution between capital and labour in production.

The elements of the consumption data matrix are assumed to be uniformly distributed
where the standard deviation differs by good: rice, construction, and financial services
are assumed to be the most reliably reported goods with standard deviations of 10
percent of their base value; transportation and non-financial services, the least reliably
reported with standard deviations of 30 percent of their base value; and the data on the
remaining goods are assumed to be of intermediate reliability with standard deviations
of 20 percent of their base values.

Likewise, the elasticities are also assumed to be uniformly distributed. The bounds
for the distributions of the production elasticities are assumed to be the central values
±0.35, while those of other elasticities are assumed to be ±40 percent of their initial
values. The central case values and bounds of these elasticities are given in Table A.4.

The uniform distributions for the data and the elasticities are then approximated
with three-point discrete approximations obtained from Gaussian quadrature. The sup-
port of each approximate distribution has a low, middle and high value. The low value in
each approximation derived through Gaussian quadrature is given by the lower bound
of the distribution plus 11.27 percent of the range and is associated with a probability of
0.28. The middle value is the lower bound plus 50 percent of the range (the central case
value) with a probability of 0.44, and the high value, the upper bound minus 11.27
percent of the range, is associated with a probability of 0.28.

With 31 elasticities and 70 data elements in the consumption expenditure matrix,
the support of the discrete joint probability distribution approximation has 3101

points. The probability associated with any one of those points is given by the
product of the probabilities of its data and elasticity components. A random sample of
500 points is drawn from the joint probability distribution on the assumption that this
number is sufficiently large that the sample mean and standard deviation can be used to
derive confidence intervals for the model’s welfare results.

The sensitivity results are reported in columns (2), (3), and (4) of Table 6. The confi-
dence intervals in Table 6 suggest that if the specified distributions for the data and the
elasticities are true, the model results are robust to uncertainty in the parameters, in
the sense that the signs of the welfare effects do not change. Furthermore, at the 95
percent confidence interval, the ranking of the incidence of the Ivorian personal income
tax among household groups remains the same as in the central case: government em-
ployees bear most of the burden of the tax with inactive households assuming a
secondary burden. Thus, if the many assumptions made about the source and nature of
uncertainty in the data for the Côte d’Ivoire model hold, the central case model results
could be confidently presented as inputs into a debate on tax policy reform.
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5. Conclusions

Among the criticisms leveled against applied general equilibrium models is one of
empirical weakness –model parameterization relies on point observations which lack
the statistical rigour of time series data. One means of addressing this criticism is for
modelers to incorporate whatever information they do have about the quality of those
single observations into the modeling process via sensitivity analyses. Existing sensi-
tivity analysis methodologies, however, are restricted to the set of exogenously speci-
fied parameters. In contrast, the CPSA methodology presented here provides measures
of the sensitivity of model results to uncertainty in the data used to derive the bench-
mark data set, and hence, to uncertainty in the values of the calibrated parameters.
When the CPSA is combined with existing exogenous parameter sensitivity analysis
procedures in an ‘extended sensitivity analysis’, modelers can undertake sensitivity
analysis for the full set of model parameters.

Extended parameter sensitivity analysis has been described and implemented for
the reconciliation of unbalanced matrices into microconsistent data sets using formal
matrix adjustment algorithms. In practice, modelers make limited use of such algorithms.
Much of the adjustment to the values found in primary data sources occurs in the ad
hoc procedures used to derive consistent control totals for submatrices, which are then
‘fine-tuned’ via formal adjustment algorithms. The next challenge is to capture the
sensitivity of model results to these larger adjustments. While the approach of the
extended sensitivity analysis procedure is sufficiently general to address such issues,
it would require parametric representations of those larger adjustments to do so. Since
many of these adjustments are ad hoc, records of how and why the data has changed
are scarce. Paradoxically, broader sensitivity analyses will require modelers to take
greater notice of how they adjust their data, but will dispense with the need to describe
that process in detail by summarizing the uncertainties in those adjustments via confi-
dence intervals over the model results.
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Table A.2. Control Totals Used for the Consumption Expenditure Matrix in the RAS
and Stone-Byron Adjustment Algorithms

(Million CFA Francs)

1. Column Control Totals:  
Aggregate Consumption Expenditure by Household Type 
Export Croppers 296,186 
Savannah Food Croppers 157,369 
Other Food Croppers 185,213 
Government Employees 375,647 
Formal Sector Households 285,345 
Small Businesses 418,530 
Inactive 334,426 

2. Row Control Totals:  
Aggregate Consumption Expenditure by Product 
Rice 86,484 
Other Subsistence Agricultural 516,210 
Traded Agricultural Products 50,164 
Primary Processed  617,750 
Manufactured Goods 341,565 
Electricity, Gas, Water 30,864 
Construction 37,600 
Transport 201,072 
Financial Services 17,509 
Non-Financial Services 153,498 

Table A.3. Number of Households by Type

Export Croppers 2,436,000 
Savannah Food Croppers 1,320,000 
Other Food Croppers 1,524,000 
Government Employees 1,416,000 
Formal Sector Households 912,000 
Small Businesses 2,580,000 
Inactive 1,812,000 
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Table A.4. Elasticities of Substitution and Bounds Used in the Systematic
Sensitivity Analysis

1. Elasticity of Substitution Between Capital and Labour in 
Production Sector (bounds are central case value ±0.35) 
 Central Lower Upper 
 Value Bound Bound 
Food 0.4 0.05 0.75 
Traditional Exports 0.4 0.05 0.75 
Non-Traditional Exports 0.5 0.15 0.85 
Formal Sector Primary Processing 0.8 0.45 1.05 
Formal Sector Manufacturing 0.8 0.45 1.05 
Gas and Electricity 0.8 0.45 1.05 
Transportation 0.5 0.15 0.85 
Formal Sector Services 0.8 0.45 1.15 
Financial Services 0.8 0.45 1.15 
Informal Sector Services 0.9 0.55 1.25 
Informal Sector Primary Processing 0.9 0.55 1.25 
Informal Sector Manufacturing 0.9 0.55 1.25 
Informal Sector Construction 0.4 0.05 0.75 
Formal Sector Construction 0.4 0.05 0.75 
    
2. Elasticity of Substitution Between Goods in Utility 
(bounds are central case value ±40) 
 Central Lower Upper 
 Value Bound Bound 
All Households 1 0.6 1.4 
    
3. Elasticity of Substitution Between Imports and Domestic 
Goods in Consumption (bounds are central case value ±40) 
 Central Lower Upper 
 Value Bound Bound 
All goods 2 1.6 2.4 
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