ESTRUCTURA ECONÓMICA, DIVISIÓN INTERNACIONAL DEL
TRABAJO Y BRECHAS DE INGRESO

Carlos Humberto Ortiz Quevedo
Profesor, Departamento de Economía, Universidad del Valle
ortizc@chasqui.univalle.edu.co

RESUMEN

En este trabajo se modela matemáticamente la visión de Leontief sobre La estructura del desarrollo (Leontief, 1963). El modelo se utiliza para examinar la relación de los países desarrollados y subdesarrollados en los mercados mundiales. Se concluye que bajo ciertas condiciones, específicamente relacionadas con la diferencia en la diversificación económica de los países, el exceso de oferta laboral de los países subdesarrollados y las restricciones a la movilidad internacional del trabajo, el modelo genera una brecha en el ingreso real per cápita de los países; en estas condiciones, el teorema de la igualación del precio de los factores deja de ser aplicable. El modelo permite sustentar la necesidad de políticas económicas que promuevan la diversificación económica de los países menos desarrollados.

Palabras clave: mercados laborales, movilidad internacional del trabajo.
Clasificación JEL: F20, O15, O11

I. INTRODUCCIÓN

El propósito inicial de este trabajo es modelar matemáticamente la visión de Leontief sobre La estructura del desarrollo (Leontief, 1963). Posteriormente se utiliza el modelo para examinar la relación de los países desarrollados y subdesarrollados en los mercados mundiales. Finalmente, se muestra que bajo determinadas condiciones, específicamente relacionadas con la brecha en el desarrollo económico de los países y la restricción a la movilidad internacional del trabajo, el teorema de la igualación del precio de los factores deja de ser aplicable y surge una brecha en el ingreso real de los países.

Año tras año se reporta la existencia de grandes brechas en el ingreso real per cápita de los países (ver Informe del Desarrollo Mundial del Banco Mundial, varios números). Los analistas que han realizado medidas comparables del producto de los países también reportan estas brechas (Summers y Heston, 1991). Explicar estas diferencias -la pregunta por la riqueza y la pobreza de las naciones- es una aspiración tan antigua
como la ciencia económica (Smith, 1776; Stern, 1991; Landes, 1998). Este artículo es, pues, una contribución a la búsqueda de respuestas.

El modelo económico que se presenta en este artículo es un híbrido de carácter neoclásico y estructuralista. El modelo es neoclásico en tanto los agentes económicos son optimizadores y las tecnologías se caracterizan por sustitubilidad entre los factores de producción. También es estructuralista en tanto la tecnología de cada sector económico es particular y se define por el tamaño del conjunto de sus bienes intermedios.

Como el modelo pretende incorporar la visión de Leontief, conviene presentar brevemente las ideas centrales de su artículo de 1963. Basado en un análisis de las matrices insumo-producto de países desarrollados y subdesarrollados, Leontief encuentra que existe una relativa estabilidad de las tecnologías: “Cada sector presenta una relación relativamente invariable entre los insumos que recibe de los demás y su contribución al producto total de la economía” (1963, p. 101). Esta receta está fundamentalmente determinada por la tecnología” (p.101). Es esta especificidad de la tecnología de cada sector económico la que define el carácter estructural del análisis de Leontief.

Adicionalmente, y basado en un análisis comparativo, Leontief concluye que “... cuanto más desarrollada está una economía, más se parece en su estructura interna a otras economías desarrolladas” (p. 98); y “cuanto más extensa y desarrollada es una economía, tanto más completa y articulada es su estructura” (p. 108). Esta es la característica de los procesos de industrialización que se denomina profundización insumo-producto (Chenery, Syrquin y Robinson, 1986).

En relación con los países subdesarrollados, Leontief muestra que “... las tablas insumo-producto de estos países revelan que no sólo son más pobres y pequeños que los demás, sino que sus estructuras internas son también diferentes, ya que son incompletas comparadas con las que presentan las economías de los países desarrollados” (p. 98). Por consiguiente, “una economía puede calificarse de subdesarrollada en la medida en que carece de algunas de las partes que necesita para funcionar” (p. 108-109).

La caracterización del subdesarrollo requiere una consideración explícita del comercio internacional, pues “cuando en un país no se da este desarrollo completo (...) le queda la alternativa de importar aquellos bienes que no produce y que necesita consumir” (p. 115). En la visión de Leontief, los países subdesarrollados y desarrollados se relacionan asimétricamente en el mercado mundial; los primeros se caracterizan por carencias estructurales y los segundos, por plenitud tecnológica estructural. En consecuencia, la división internacional del trabajo tiende a especializar a los países pobres en productos primarios, mientras que los más desarrollados se especializan en

bienes manufacturados. “Resulta, pues, que las economías subdesarrolladas constituyen la imagen invertida de las desarrolladas” (p. 121).

La metodología que utiliza Leontief para comparar las estructuras económicas de los países es la triangulación de sus matrices insumo-producto; se trata básicamente de un ordenamiento de los sectores económicos en la tabla insumo-producto de acuerdo con el grado de integración intersectorial anterior. Por ello, “la «triangulación» de la tabla [insumo-producto] sirve (...) para poner de manifiesto la estructura interna de las relaciones interindustriales” (p. 105). Por medio de esta operación analítica, Leontief revela la similitud estructural entre las economías desarrolladas de Estados Unidos y de Europa Occidental.

Las implicaciones de esta visión estructural de las economías para el desarrollo económico son inmediatas: el desarrollo económico de largo plazo tiende a seguir una secuencia en la cual los insumos se desarrollan primero. Así, pues, como Marx, quien pensaba que “los países industrialmente más desarrollados no hacen más que poner delante de los países menos progresivos el espejo de su propio porvenir” (Marx, 1867, Prólogo a la Primera Edición de El Capital), Leontief también plantea que “en esencia, el proceso de desarrollo consiste en crear y poner en práctica un sistema lo más parecido posible al que presentan las economías de Estados Unidos, de la Europa Occidental y, recientemente, de la U.R.S.S., procurando no olvidar las limitaciones derivadas de la composición local que presentan los recursos ni de la tecnología con que se cuenta para explotarlos” (p. 109 y 115).

Una modelación dinámica del análisis de Leontief se explora en la tesis doctoral del autor (Ortiz, 1993) y en un modelo agregado de crecimiento, en el cual la diversificación económica se caracteriza por una articulación creciente de las ramas industriales (Ortiz, 1996). En este artículo se vuelve al análisis estático para examinar las relaciones económicas internacionales.

El artículo está organizado así: después de esta introducción se presenta el modelo en la segunda sección. En la tercera sección se resuelve el equilibrio de la economía en autarquía. Las consecuencias del comercio internacional entre economías estructuralmente desiguales se consideran en la sección cuarta. La quinta sección cierra el artículo con algunos comentarios finales.

II. EL MODELO

La estructura económica es descrita instantáneamente por una matriz insumo-producto aumentada con un vector de trabajo (ver la Figura 1).

2 La integración intersectorial anterior o hacia atrás se define como la dependencia de cada sector con respecto a sus proveedores de bienes intermedios; un mayor grado de integración anterior implica una mayor diversidad y cantidad de insumos requeridos. Por integración posterior se entiende el vínculo de un sector con sus fuentes de demanda.
No existe producción conjunta y todos los sectores económicos (y bienes) se indexan de acuerdo con el grado de integración intersectorial anterior entre 0 y N. Se supone que esta integración aumenta linealmente con el índice del sector: el sector \(j \)-ésimo sólo utiliza como insumos intermedios aquellos con menor índice. Esta característica garantiza que la matriz insumo-producto de esta economía sea perfectamente triangular. Los insumos de cada sector se encuentran leyendo verticalmente la matriz insumo-producto. La fuerza laboral se indexa según su distribución entre los sectores económicos.

La tecnología de cada sector se define con la siguiente función de producción:

\[
X_j = L_j^{-\alpha} \int_0^{\alpha} X_i^{1-\alpha} \, di, \quad 0 < \alpha < 1, \tag{1}
\]

donde \(X_j \) es el producto bruto del bien \(j \)-ésimo, \(X_i \) es el consumo intermedio del bien \(i \)-ésimo en el sector \(j \)-ésimo. Esta tecnología se caracteriza por rendimientos constantes a escala y una alta sustituibilidad entre los bienes intermedios; la elasticidad de sustitución entre cualquier par de insumos es constante e igual a \(1/\alpha > 1 \). La ecuación (1) implica que todos los bienes se producen con la misma tecnología, pero cada producto es particular porque el tamaño del conjunto de sus insumos intermedios es característico del sector.

La fuerza laboral es constante y se normaliza a 1. En un momento dado, una fracción \(m \) de la fuerza laboral se ofrece inelásticamente. El equilibrio entre la oferta y la demanda laboral está dado por la siguiente ecuación:

\[
\int_0^N L_j \, dj = m, \tag{2}
\]

donde \(N \) mide el rango de bienes existentes.
Todos los bienes se suponen perecederos y todos son adecuados para consumo final; por lo tanto, la demanda bruta del bien i-ésimo se compone de demandas intermedias y el consumo final del bien. El equilibrio de mercado del mismo bien satisface:

$$X_i = \int_0^N x_{ij} \, dj + c_i,$$

donde c_i es la demanda final del bien i-ésimo. Note que el sector i-ésimo se integra hacia adelante sólo con sectores de mayor integración intersectorial anterior ($X_j > 0$ para $j > i$; $X_j = 0$ para $j \leq i$).

Se supone que el consumidor representativo deriva utilidad del consumo de cualquier bien. Las preferencias son definidas por la siguiente transformación monotónica de la función de utilidad CES (elasticidad de sustitución constante):

$$u = (1/\gamma) \ln \left(\int_0^N C_i \gamma \, di \right), \quad \gamma < 1,$$

donde $\sigma = 1/(1-\gamma)$ es la elasticidad de sustitución en el consumo entre cualquier par de bienes. Se supone una alta elasticidad de sustitución entre los bienes: $\gamma > 0$, o $\sigma > 1$. Esta desigualdad es necesaria para que la utilidad marginal de la diversificación económica –aumento en el rango de bienes disponibles, N– sea positiva.

III. EL EQUILIBRIO EN AUTARQUÍA

El consumidor representativo maximiza su función de utilidad, ecuación (4), sujeto a su restricción presupuestaria:

$$\int_0^N p_i \cdot C_i \, di = mw,$$

donde w es la tasa salarial, mw es el ingreso corriente, y p_i es el precio del bien i-ésimo.

El consumidor toma como dados el ingreso y y los precios para generar la siguiente función de demanda relativa

$$\frac{C_i}{C_j} = \left(\frac{p_j}{p_i} \right)^{-\sigma}, \quad \sigma = \frac{1}{1-\gamma} > 0$$

Nota que la desigualdad $\gamma < 1$, o $\sigma > 0$, garantiza que las demandas relativas caigan con los precios relativos.
Las ganancias de las firmas en el sector j-ésimo se definen como sigue:

$$\pi_j = p_j X_j - w L_j - \int_0^j p_i X_i \, di$$

El supuesto de rendimientos constantes a escala permite agregar a las firmas en su sector. Para maximizar sus ganancias, las firmas del sector contratan trabajo (L_j) y compran insumos de su rango característico (0_j). Estas demandas de factores de producción se calculan tomando el salario y los precios como datos:

$$L_j = \alpha \frac{p_j X_j}{w} \quad (7)$$

$$X_{ij} = \left[\left(1 - \alpha \right) \frac{p_j}{p_i} \right]^{1/\alpha} L_j \quad i \in [0, j] \quad (8)$$

Ahora se calculan los precios de equilibrio. Sustituyendo las ecuaciones (7) y (8) en la ecuación (1) se obtiene

$$p_j^{1/\alpha} = \frac{a}{w} \int_0^j p_i^{-1/\alpha} \, di \quad a = \left[\alpha^\alpha \left(1 - \alpha \right)^{1-\alpha} \right]^{1/\alpha} > 0 \quad (9)$$

Diferenciando esta expresión con respecto a j, se obtiene:

$$\frac{dp_j}{dj} = -\frac{\alpha a}{w} p_j^2$$

Integrando entre 0 e i se encuentra

$$p_i = \frac{w}{\alpha a i} \quad (10)$$

Esta deducción es posible porque las características tecnológicas de la economía implican que el producto del sector 0 es nulo: un sector que no utiliza insumos no genera ningún producto [ver la ecuación (1)]; por lo tanto, el único precio significativo para el producto de este sector es infinito. La ecuación (10) muestra que los precios de los insumos decrecen asintóticamente hacia 0 con el grado de integración intersectorial anterior y que los precios relativos son fijos ($p_i/p_j = j/i$).

Dada la estructura de los precios relativos se resuelven los coeficientes técnicos. Sustituyendo las ecuaciones (10) en la ecuación (7) arroja el coeficiente técnico del trabajo en el sector j-ésimo:
\[
\frac{L_j}{X_j} = \frac{1}{a_j} \tag{11}
\]

Combinando las ecuaciones (8), (10) y (11) se obtiene la expresión reducida de los coeficientes técnicos del sector \(j \)-ésimo:

\[
\frac{X_{ij}}{X_j} = \frac{1 - \alpha}{\alpha} \frac{i^{\frac{1}{1/\alpha}}}{j^{1 - \frac{1}{1/\alpha}}} \quad \text{para todo } i \in \{0, j\} \tag{12}
\]

Las últimas dos ecuaciones muestran que, dado el grado de integración intersectorial anterior, \(j \), los coeficientes técnicos son \(fijos \) como en una tecnología tipo Leontief. Nótese, sin embargo, que no se suponen coeficientes técnicos fijos. De hecho, se supone que los bienes intermedios son buenos sustitutos. Los coeficientes tecnológicos se fijan en este modelo porque los precios relativos son fijos. Esto ocurre, a su vez, por el supuesto de que el rango del conjunto de insumos de cada sector está dado por la tecnología. Así, en esta economía los obreros aprenden una sola forma de combinar insumos y trabajo; además, las recetas nunca se modifican, ni siquiera en su composición.

Para encontrar la expresión reducida de la demanda del bien \(i \)-ésimo se combinan las ecuaciones (5), (6) y (10). Esta operación arroja la siguiente expresión:

\[
C_i = \alpha a \sigma m (i/N)^{\sigma} . \tag{13}
\]

Se deduce de esta ecuación que la estructura de la demanda final se sesga a favor de los sectores con mayor grado de integración intersectorial anterior (\(i \) cercana a \(N \)). Este resultado no es sorprendente si se tiene en cuenta que los precios relativos caen con ese grado de integración [ver la ecuación (10)]. Nótese que el sesgo mencionado es mayor, mientras mayor sea la elasticidad de sustitución entre los bienes.

La estructura de la demanda bruta se resuelve sustituyendo las ecuaciones (12) y (13) en la ecuación (3):

\[
X_i = \frac{1 - \alpha}{\alpha} \frac{i^{\frac{1}{1/\alpha}}}{j^{1 - \frac{1}{1/\alpha}}} \sum_{j=1}^{N} \frac{X_j}{j^{1 - \frac{1}{1/\alpha}}} d_j + \frac{\alpha a \sigma m}{N^{\sigma}} i^{\sigma} \tag{14}
\]

Diferenciando dos veces esta expresión con respecto a \(i \), se obtiene

\[
\frac{d^2 X_i}{d i^2} = \frac{a \sigma^2 (\alpha \sigma - 1) m}{N^{\sigma}} i^{-\sigma - 2} .
\]
Esta es una ecuación diferencial de segundo orden cuya solución general tiene la siguiente forma: \(X_i = \phi_0 + \phi_1 t + \phi_2 t^2 \), donde \(\phi_0 \), \(\phi_1 \) y \(\phi_2 \) son coeficientes constantes que se deben determinar. Sustituyendo esta ecuación en la ecuación (14) se deriva la solución de la demanda bruta del bien i-ésimo:

\[
X_i = \frac{a \sigma}{\sigma - 1} \left[\left(1 - \alpha \right) \left(\frac{1}{N} \right) + \left(\alpha \sigma - 1 \right) \left(\frac{1}{N} \right)^\sigma \right] m. \tag{15}
\]

De esta ecuación se deduce que el perfil de la estructura económica depende de la relación entre la elasticidad de sustitución en el consumo final, \(\sigma \), y la elasticidad producto del trabajo, \(\alpha \) (el inverso de la elasticidad de sustitución entre los bienes intermedios).

La demanda final de un bien particular siempre aumenta con el grado de integración intersectorial anterior, \(\iota \), porque los sectores más integrados hacia atrás producen bienes más baratos. Dada la “fijeza” de los coeficientes técnicos [ver la ecuación (12)], la demanda bruta por sector económico tiende a aumentar con la demanda final; sin embargo, el sesgo de la estructura de la demanda final no necesariamente determina el perfil de la estructura de las demandas brutas; aunque la demanda final por los productos de menor integración intersectorial anterior sea insignificante, ellos son demandados como insumos en la producción de sectores de mayor integración intersectorial anterior. Esas demandas derivadas crecen con la intensidad de los insumos intermedios en la tecnología –disminuyen con \(\alpha \)– por lo tanto, si la producción es intensiva en bienes intermedios (\(\alpha \) cercano a cero), de tal manera que \(\alpha \sigma < 1 \), la estructura de la demanda bruta puede estar sesgada hacia sectores con un nivel intermedio de integración intersectorial anterior. Por otra parte, una baja intensidad en el uso de bienes intermedios, de manera que \(\alpha \sigma > 1 \), determina un sesgo de la demanda bruta hacia los sectores de mayor integración intersectorial anterior. \(^3\)

La combinación de las ecuaciones (11) y (15) permite la deducción de la demanda de trabajo en el sector \(j \)-ésimo:

\[
L_j = \frac{\sigma}{\sigma - 1} \left[\left(1 - \alpha \right) + \left(\alpha \sigma - 1 \right) \left(\frac{1}{N} \right)^\sigma \right] \frac{m}{N}. \tag{16}
\]

La Figura 2 muestra las diferentes posibilidades de asignación del trabajo entre los sectores.

\(^3\) Recuérdese que la elasticidad de sustitución en el consumo final, \(s \), se supone mayor que 1.
Esta Figura muestra que la estructura del empleo se relaciona directamente con la estructura de las demandas brutas. Incluso los sectores económicos con la menor integración intersectorial anterior, demandan trabajo. Si la intensidad en bienes intermedios de las actividades económicas es alta (α cercano a cero), de manera que \(\alpha \sigma < 1 \), la demanda de trabajo se sesga hacia los sectores con menor integración intersectorial anterior (el perfil del empleo decrece con el índice de integración \(j \)); si la intensidad en bienes intermedios es baja (α cercano a uno), de manera que \(\alpha \sigma > 1 \), la demanda de trabajo se sesga hacia los sectores con mayor integración intersectorial anterior; en el caso intermedio, \(\alpha \sigma = 1 \), todos los sectores contratan el mismo número de trabajadores.

Dada la estructura de la demanda final se puede determinar el nivel instantáneo de utilidad. Insertando la ecuación (13) en la (4), se deriva:

\[
 u = \ln \left[\beta \cdot m \cdot N^{\sigma/(\sigma - 1)} \right], \quad \beta = \alpha \cdot a \cdot \sigma^{-1/\sigma} > 0
\]

(17)

Por consiguiente, la utilidad aumenta con la fracción de la fuerza de tiempo que el consumidor representativo le asigna al trabajo \(m \), y con el rango de bienes existente en la economía \(N \). La ecuación (17) muestra por qué es natural suponer un alto grado de sustitución entre los bienes \(\sigma > 1 \): sólo en este caso el bienestar social aumenta con el conjunto de bienes disponibles.
IV. DESARROLLO ECONÓMICO DESIGUAL Y COMERCIO INTERNACIONAL.

Considérense las implicaciones de la apertura al comercio internacional para una economía como la analizada hasta ahora. Refiérase a la figura 3. Dos bloques económicos, el Sur y el Norte, están inicialmente en autarquía y posteriormente se unen a través del comercio internacional. Cada bloque se compone de muchos países idénticos, de manera que cada país es pequeño y los precios del mercado mundial se determinan competitivamente. No existen costos de transporte. La población de cada país es internamente móvil, pero la migración internacional está prohibida, especialmente del Sur al Norte. Se supone que el bloque del Norte posee un mayor grado de diversificación económica que el del Sur; más precisamente, el Norte produce N^* bienes y el Sur produce N bienes de tal manera que $N^* > N > 0$. En adelante, las variables del Norte se distinguirán con una estrella.

FIGURA 3
Matrices Insumo-Producto del Sur y del Norte

Para los precios relativos de estas economías se obtienen las mismas soluciones que cuando las economías están cerradas, porque ellas dependen del grado relativo de integración intersectorial anterior [ver la ecuación (10)]. En el mercado mundial los precios de los bienes se igualan. Si estos bloques comerciales tienen actividades económicas comunes, la tasa salarial es la misma en el Sur y en el Norte: no existen brechas de ingreso per cápita entre los países. Esta es una consecuencia del teorema de la igualación de los precios de los factores: la movilidad de los bienes sustituye perfectamente la movilidad de los factores.
El próximo paso es definir la estructura de la demanda bruta mundial. Como muestra la Figura 3, las demandas mundiales están dadas por las siguientes ecuaciones:

\[
\begin{align*}
X_i^W &= X_i + X_i^* = \sum_{j=1}^N X_{ij}^* dj + \sum_{j=1}^{N'} X_{ij}^* dj + C_i + C_i^*, \quad i \leq N, \\
X_i^W &= X_i^* = \sum_{j=1}^{N'} X_{ij}^* dj + C_i + C_i^*, \quad N \leq i \leq N',
\end{align*}
\]

(18)

donde el superíndice \(W \) denota demanda mundial. Nótese que la condición de equilibrio de los mercados en el rango \([N,N']\) sólo incluye las demandas intermedias del Norte, ya que el Sur no demanda este tipo de bienes intermedios, pero se incluyen las demandas finales por estos bienes provenientes tanto del Sur como del Norte.

Nótese la relación asimétrica fundamental entre el Sur y el Norte. Mientras el Norte puede especializarse en aquellos sectores con mayor integración intersectorial anterior, puede de todas formas producir los bienes con menor integración intersectorial anterior que produce el Sur; sin embargo, el Sur no puede producir los bienes con mayor grado de integración intersectorial. Para los objetivos del artículo es suficiente suponer que la incapacidad tecnológica del Sur se explica por el escaso conocimiento de las "recetas" propias de estas tecnologías del Norte.

A continuación se obtienen expresiones para las partes componentes de la demanda bruta. Se empieza con las demandas finales. Todos los consumidores comparten la misma función de utilidad y tienen acceso al consumo de \(N' \) bienes por medio del comercio internacional. Las demandas finales se definen con las siguientes ecuaciones que equivalen a la ecuación (13):

\[
\begin{align*}
C_i &= a \alpha a \sigma (i/N')^\sigma mL, \\
C_i^* &= a \alpha a \sigma (i/N')^\sigma mL',
\end{align*}
\]

(19)

donde \(w \) es la fracción de la fuerza laboral que ofrece trabajo en el Sur, y \(L \) es la fuerza laboral disponible del Sur. Las mismas variables del Norte se distinguen con una estrella.

La demanda de trabajo y las demandas de bienes intermedios son proporcionales a la producción bruta de cada sector [ver las ecuaciones (11) y (12)]. Al sustituir estas demandas en las ecuaciones (18), se obtiene la ecuación de la demanda bruta del sector \(i \)-ésimo:

\[
X_i^W = \frac{a \sigma}{\sigma - 1} \left[(1 - \alpha) \left(\frac{i}{N'} \right)^\sigma + (a \alpha - 1) \left(\frac{i}{N'} \right)^\sigma \right] (mL + m' L')
\]

(20)

la cual es análoga a la solución en el caso de la economía cerrada [ver la ecuación (15)]. La ecuación (20) aplica a todos los bienes en el rango \([0,N']\); por consiguiente,
no existen discontinuidades en la estructura de la demanda mundial a nivel del N-
ésimo bien, como podría pensarse de un examen de la Figura 3. La explicación de
este comportamiento radica en que la estructura de la demanda final del mundo es
continua y suave; por lo tanto, con coeficientes técnicos fijos, la demanda bruta preserva
las mismas características.

Dada la solución de la estructura de la demanda mundial, se puede resolver la
demanda mundial de trabajo del sector j-ésimo utilizando la ecuación (11):

\[L_j^w = \frac{\sigma}{\sigma - 1} \left[(1 - \alpha) + (\alpha \sigma - 1) \left(\frac{i}{N'} \right)^{\sigma - 1} \right] \frac{mL + m^*L^*}{N'} \] \hspace{1cm} (21)

Luego, integrando entre 0 e i, y dividiendo por la demanda mundial de trabajo,
\(mL + m^*L^* \), se deduce

\[d \left(\frac{i}{N'} \right) = \frac{\sigma}{\sigma - 1} \left[(1 - \alpha) \left(\frac{i}{N'} \right) + \frac{\alpha \sigma - 1}{\sigma} \left(\frac{i}{N'} \right)^{\sigma} \right], \quad i \in [0, N'] \] \hspace{1cm} (22)

Esta expresión representa la participación acumulada del rango de actividades
\([0,i]\) en la demanda mundial de trabajo; los extremos de esta distribución están dados
por \(d(0/N') = 0 \) y \(d(N'/N') = 1 \). La línea OET en la Figura 4 representa esta
participación para todo el rango de actividades entre 0 y \(N' \). Para dibujar esta línea se
supone que \(\alpha > 1 \), de manera que la demanda de trabajo aumenta más que
proportionalmente con el grado de integración intersectorial anterior.
De especial interés es la participación acumulada en la demanda mundial de trabajo de las actividades económicas en el rango \(0, N \): \(d(N/N') \), la cual se representa en la Figura 4 con la razón \(NE/NZ \). Como el Sur no genera actividades con un grado de integración intersectorial anterior mayor a \(N \), \(d(N/N') \) representa la máxima participación en la demanda mundial de trabajo a la que puede aspirar el bloque Sur.

Si la fracción de la oferta de trabajo que corresponde al Sur se denota con la letra \(s (= mL/(mL+m'L')) \), se tienen tres posibilidades (refiérase de nuevo a la Figura 4):

a) Si el Sur ofrece la fracción \(s \) de la oferta mundial de trabajo, se desempeña en actividades con una integración intersectorial anterior menor que \(N \); su participación en estas actividades está dada por la razón \(NA/NE \). El Norte emplea una fracción de su fuerza laboral activa igual a \(AE/AZ \) en actividades económicas con integración intersectorial anterior menor que \(N \), y el resto, dado por la razón \(EZ/AZ \), se emplea en actividades con mayor integración intersectorial anterior. El modelo no permite definir la distribución efectiva de las actividades comunes entre el Sur y el Norte.

b) Si el Sur ofrece la fracción de trabajo \(s \), realiza las actividades con integración intersectorial anterior menor o igual a \(N \). El Norte, por su parte, realiza las actividades económicas con integración intersectorial anterior mayor o igual a \(N \). En este caso sólo existe una actividad en común, la actividad marginal con una integración intersectorial anterior igual a \(N \).

c) Si el Sur propone la fracción de la oferta laboral \(s \), el salario del Sur cae para corregir el exceso de oferta dado por la distancia \(EC \). Por otra parte, el salario del Norte aumenta para corregir el exceso de demanda dado por la misma distancia. Sin restricciones a la migración internacional, los trabajadores del Sur migrarían al Norte para corregir los desequilibrios, pero sin esta posibilidad se ajustan los salarios; además, se ajustan los precios pues estos son proporcionales a los salarios [ver la ecuación (10)]; o sea, disminuyen los precios relativos de los productos del Sur.

En este tercer caso no aplica el teorema de la igualación del precio de los factores, porque el Sur se especializa completamente en actividades con una integración intersectorial anterior menor a \(N \) -no existen actividades comunes entre el Sur y el Norte-; además, la estructura de precios pierde la hermosa continuidad que incorporaba la ecuación (10); los precios aumentan a partir del producto \(N \)-ésimo. Por esta razón la utilización del cálculo se dificulta y, en consecuencia, no ha sido posible deducir una expresión analítica para la brecha de precios y salarios entre el Sur y el Norte. Una contribución en esta dirección podría arrojar resultados interesantes para el análisis de las brechas de ingreso de los países; no obstante, del modelo se deriva que los desequilibrios laborales dependen directamente de la diversificación económica del Sur en relación con la del Norte, \(N/N' \); por consiguiente, un menor desarrollo relativo del Sur implica un ajuste salarial mayor y una mayor brecha internacional de los ingresos.
V. COMENTARIOS FINALES

En este artículo se construye un modelo económico con el cual se muestra que las asimetrías estructurales del desarrollo de los países y las restricciones internacionales a la movilidad del trabajo, pueden generar desequilibrios en los mercados laborales que se resuelven con brechas internacionales de ingreso.

Aunque el modelo es estático, tiene implicaciones dinámicas. Se deduce, para empezar, que una diferenciación estructural creciente entre países subdesarrollados y desarrollados—por estancamiento del Sur y/o una mayor diversificación económica en el Norte—puede inducir un deterioro de los términos de intercambio para los países del Sur.

Por otra parte, el modelo provee elementos analíticos para entender el "milagro" de los países recientemente industrializados del sudeste asiático. La diversificación económica de estos países—apoyada por el Estado y sustentada por una inversión masiva en educación—puede haber aumentado significativamente su demanda laboral doméstica e inducido un crecimiento sostenido de sus salarios reales. De esta forma, se explica parcialmente la paradoja de que estos países experimentaran un crecimiento sostenido de sus salarios desde el comienzo del proceso de transformación estructural, aunque su oferta de trabajo era supuestamente ilimitada (Amsden); por lo tanto, gran parte del milagro asiático puede explicarse por efectos pecuniarios derivados de la gran brecha de ingresos existentes entre el Sur y el Norte. Así, pues, este modelo aporta elementos para justificar la utilización de políticas económicas dirigidas a potenciar la diversificación económica de los países subdesarrollados.

VI. BIBLIOGRAFÍA

