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ABSTRACT

This document reviews and applies recently developed techniques for Bayesian
estimation and model selection in the context of Time Series modeling for Stochastic
Volatility. After the literature review on Generalized Conditional Autoregressive models,
Stochastic Volatility models, and the relevant results on Markov Chain Monte Carlo
methods (MCMC), an example applying such techniques is shown. The methodology is
used with a series of Weekly Colombian-USA Exchange Rate on seven different models.
The GARCH model, which uses Type-IV Pearson distribution, is favored for the selecting
technique, Reversible Jump MCMC, over other models, including Stochastic Volatility
Models with a Student-t distribution.
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I. INTRODUCTION
Two different and competing techniques are nowadays used for econometricians

and statisticians to model volatility, as in return assets or exchange rates: One of
them, Autoregressive Conditional Heteroscedastic (ARCH), its generalization,
GARCH, and multiple extensions have proven to be very successful in modeling
financial time-varying volatility series.

The competing alternative to GARCH models are Stochastic Volatility models,
mainly treated in the frequentist framework, which have more �theoretical�
background. They appear in the financial literature on option pricing as a
generalization of the Black-Scholes model.

* This work is based on the Master Report presented to The University of  Texas at Austin, by the author, as a
requirement for the degree of  Master of  Science in statistics.
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Usually the researcher faces the question of what model to use. Several alternatives
have been proposed in the frequentist statistical framework to deal with this, ranging
from R2, the traditional and extensively used Akaike Information Criterion (AIC),
PRESS statistic, and many others. In those alternatives the model residuals are
obtained (usually observed minus adjusted or perhaps deviance residuals) and
aggregated to form the measures of adequacy.

Unfortunately, �classical� approaches to model choice are limited. The well-
known standard Neyman-Pearson theory provides an �optimal� test through the
likelihood ratio for the limited case of the comparison of two distinct models.
More generally, the likelihood ratio test enables a choice between models only in
the nested case, where there is an unambiguous null hypothesis. Selection is based
upon an asymptotic χ2 approximation, which usually is poor for small sample sizes.
Frequentist theory does not offer much for model selection of non-nested models,
which are not rare in practice. (See Piorier, 1995, and Gelfand, 1995, for references).
This documents uses MCMC, an intuitive, computationally easy-to-implement,
and inexpensive Bayesian alternative, to decide among suitable models.

This document is organized as follows: Section II presents a review of GARCH
models and Stochastic Volatility models, especially those models to be used later in
this paper; then it moves on to MCMC methods and Bayesian model selection
techniques. Section III deals with how to use MCMC to implement estimation of
GARCH models, as Vrontos et al. (2000) suggest, and how to estimate SV models.
Section IV deals with the results and Section V presents the main conclusions, some
suggestions and limitations.

II. BACKGROUND
This chapter presents a short review of some statistical and econometrics model

proposed in the literature to model time-varying volatility series. After that, Bayesian
techniques for model estimation and selection are briefly presented.

A. Generalized Autoregressive Conditional Heterocedastic Models
Time series models, traditionally fitted in practice, are supppose to have constant

variance, but When working with high frequency time series that is seldom the
case, as can be seen in Figure 2, an Autoregressive Conditional Heterocedastic models
(ARCH) have been proposed in the literature to deal with this problem, in the
spirit of Engel (1982) could be tried; this is

ttttttt cyorcyory εεε +=+== (1)
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Hence, the conditional variances are thought of as a function of the square of the
previous observational residuals. In the original and simple case that normality is
assumed, the likelihood is given by:
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when, in return financial time series analysis, the usual most important unknown
to estimate and forecast is the volatility, 2

th

A Generalized ARCH (GARCH), that usually results in more parsimonious
representations, as Bollerslev (1986) proposed, assumes that the conditional variances
follow an ARMA process, thus:
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with the analogous likelihood, as in the ARCH case, if normality for ε
t
 is assumed.

With restrictions α
i
 ≥ 0, i = 0,1,..., r, and β
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 ≥ 0, i = 0,1,..., s, to guarantee that 0h 2
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1i <+ == βα ÓÓ  in order to assure stationarity. Weaker restrictions

can be required, in practice, though (See Nelson and Cao, 1992).

Another extension of (3) is using a Student-t distribution, with degrees of freedom
to account for the heavier tails of the distribution of the error process {ε

t
} as was

introduced by Bollerslev (1987), and by Baillie and Bollerslev (1989). The likelihood
then is
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An Exponential GARCH (EGARCH), is introduced by Nelson (1991) to avoid
imposing restrictions on α
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Additionally, assuming that ε
t
 follows a Generalized Gaussian Distribution, GED,

then the likelihood is:
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The use of Bernoulli-Mixtures of two normal distributions, proposed by Ball
and Torous (1983), was successfully implemented by Vlaar and Palm (1993):
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for the conditional variances. They used an MA(1) term to model the changes in
levels of several exchange rates, as:

1t10tt y −−−−= εθλνφε (7)
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t
 is distributed as a mixture of two normals, hence
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where λ is the jump intensity, v is the expectation in the jump size, and δ2 the
expected change in variance. This representation is useful and intuitive for economies
with target or bands for their exchange rates, like Colombia or the European
Economic Union. The MA term, θ

1
ε
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 is explained as allowing for mean reversion.

Therefore, the likelihood is expressed as:
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More recently, Bera and Premaratne (2000) propose the use of the Pearson Type-
IV Family Distributions in order to model skewness and leptokurtosis that are
larger than usual. For a GARCH(1,1), the log-likelihood is:
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When information arrives at random order and data refers to close-to-close
periods, Hsieh (1989) showed that the use of a normal-lognormal mixture distribution
improves the fit over other GARCH alternatives. That distribution is not tried
here because it requires the computation of a defined integral over one must rely on
high numerical integration, however, to provide a suitable solution to that problem.

(10)
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B. State Space Models
A different alternative in time-series analysis is an State-Space (S-S), model, as

West and Harrison (1997) state, they extend and update the seminal paper by
Harrison and Stevenson (1976). The model is typically represented by two equations:

Observation Equation: ,FY tt
'
tt ν+θ= v

t
 ~ N(0, V

t 
), (11)

System Equation: θ
t
 = G

t
θ

t�1
 + w

t
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) (12)

where y
t
 is the observed (sometimes latent) variable; θ

t
 is a vector of unknown

parameters, which follows the first order Markov process (12); v
t
 is a vector of

unobserved and uncorrelated stochastic error terms; is a matrix of known coefficients;
and w

t
 is an unobserved stochastic term, generally assumed uncorrelated with v

t
.

It is worth noting that any data series for which there exists a natural ordering
of observation, fits into the dynamic framework, so the time series not need be
equally spaced, and missing data problems can easily be handled in this context.
Pole et al. (1994) present applied methodology, as well as multiple examples.

Usually, and without much loss, V
t
 can be considered constant, and working in

terms of the precision φ = V�1, it is possible to get estimations of W
t
. The likelihood

for the S-S model is given below:

∏ ∏
= =

−





 −−=
T

1t

T

1t t

2
t

'
tt1

tt V2

)Fy(
exp)V2()|y(l)|y(l

θπαθΘ (13)

which is the density of a normal with mean t
'
tF θ  and variance V

t
. Prior probabilities

can be set up on θ
0
 and a fully Bayesian analysis of the State-Space model can be

run.

A non-linear (non-gaussian) S-S model can be set up as follows, (See Harvey et
al., 1994 for details):

y
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as the non-linear observation equation, and
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This model, which is known in the financial and econometric literature as the
Stochastic Volatility model (SV for short) can be transformed to get a linear
observational equation, as

)(lnh)y(ln 2
tt

2
t ε+= (16)

where y
t
 is the mean corrected return at time t; h

t
 is the log-volatility at time t,

which is assumed to follow a stationary process, with h
0
 drawn from a stationary

distribution; ε
t
 and η

t
 are uncorrelated standard normal white noise shocks; φ is the

persistence in the volatility (when for stationarity restrictio |φ| < 1); and ση
2 is the

volatility of the log-volatility.

The likelihood, assuming normal distribution, can be obtained by using a Kalman
Filter (See Jaquier et al, 1994, Ap. B.1). The use of a v degrees of freedom Student-
t distribution on has been considered, and the Kalman Filter needs some minor
modifications1 (See Ruiz, 1994).

C. Markov Chain Monte Carlo Methods
When doing fully Bayesian analysis of complex or high-dimensionality models,

the researcher usually faces the problem of non-conjugacy, meaning that non-exact
analytical posterior distribution can be achieved. This leads to the necessity of using
simulation approaches. Direct simulation is often impossible, due to the complicated
mathematical form of the posterior distribution in many applied models. Because
of that, an exponential rise in the interest and application of Markov Chain Monte
Carlo (referred to by its acronym, MCMC) as a tool for numerical computation of
complex integrals, particularly in Bayesian analysis, has emerged.

The key to Markov Chain simulation is to create a Markov process whose
stationary distribution is a specified  π(θ|y) and to run the simulation long enough
that the distribution of the current draws is close enough to the stationary
distribution. Once the simulation algorithm has been implemented, it should be
iterated until convergence has been reached, or, if convergence is painfully slow,
the algorithm should be altered. Hence, the study of MCMC has seen a corresponding
interest in the convergence properties of the resultant chains, which may be assessed
through a suite of diagnostics borrowed from diverse areas such as time series,
exploratory data analysis (EDA), and central limit theory.

The most widely used Markov Chain Monte Carlo methods are the Gibbs
Sampler and the group of Metropolis-Hastings algorithms and a good description
of them can be found in Gamerman (1997) or Gelman et al. (1995), among many
others.

1. E.g., the use of  digamma and trigamma functions; Abramowitz and Stegun (1967) offer computational details.
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D. Model Selection
The most damaging comment on the standard practice of choosing

a single model, and then proceeding conditional on it,
is that the research�s uncertainty is understated.

Piorier (1995, p. 605)

For frequentists the model selection problem reduces to choosing one from a
set of M models. This is usually the main aim of the analysis, and is done according
to some model selection criterion, as stated above. Bootstrap methods have been
used for model selection (See Maddala and Li, 1996, sec 5, for references). For another
perspective see Poskitt and Tremayne (1983).

Essentially, two alternative approaches in the Bayesian context are presented.
The first was introduced by Carlin and Chib (1995) and considers all models in a
formation, called here a supermodel. The Markov Chain simulation scheme for
this supermodel is presented below. The second approach presents sophisticated
simulation techniques using Markov chain with jumps between the different models;
it is referred to as Reversible Jumping, and it was introduced by Green (1995).

It will be assumed throughout this section that y is observed and it can be described
according to a model M

j
 with parameters θ

j
 of dimension d

j
, taking values in a

parameter space Θ
j
 ⊂ ℜdj, j = 1, 2, ..., M. The value of M could be ∞ as, for instance,

when considering countable classes of models. m serves the purpose of indicating a
specific model.

Assume for the moment that the posterior distribution π(θ, j), the joint
distribution of the super-parameter and the model indicator are to be obtained.
However, the main interest in inference is to obtain the posterior distribution of
θ

j
|m = j, j = 1,2,...,M. These distributions respectively provide the posterior inference

within each of the models and the posterior probabilities of the models. The
supermodel approach provides a sample from this more general, perhaps unnecessary
posterior distribution whereas the approach with jumps only provides samples
from θ

j
|m = j, j = 1,2,...,M, and m. The presence of common parameters does not

pose any problem here.

1.  Markov Chains for Super-Models
The joint distribution of all random quantities is given by

π(y, θ, j) = π(y|θ,j) π(θ|j)π
j

(17)

where j is the value of m and π
j
 = P(m = j). Given that m = j, the distribution of y

depends on θ only through θ
j
, or mathematically,

π(y, θ, j) = π(y|θ,j) (18)
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Assume also that the θ
j
 are conditionally independent, given the value of m.

Hence,
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i
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specifies the distribution of the parameters of model i, conditioned on the fact that
this is not the true model. Carlin and Chib (1995) refer to these as pseudo-prior or
linking distributions. Due to the conditional independence (18), these priors do not
interfere in the expressions of the marginal predictive densities for each model.
Nevertheless, they are relevant for the construction of the chain and must be
specified.

It follows from the above specification that
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m can always be sampled directly because it has a discrete distribution. Direct
sampling from blocks θ

j
 will depend on the conjugacy structure for model m = j

and the form of the pseudo prior distribution. When direct sampling for some of
the θ

j
 �s is not possible, Metropolis-Hastings steps may be used.

The above scheme satisfies the conditions of a conventional Markov Chain and
therefore converges to the target distribution given by the posterior. Comparison
between models is based on the marginal posterior distribution of m, p(j), j = 1, ...,
M. These probabilities are estimated by the proportion of values of m equal to j in
the sample of size n.

The pseudo prior distributions must be carefully chosen, as they affect the rate
of convergence of the chain. Carlin and Chib (1995) recommend the use of simple
standard approximations based on univariate estimates obtained from pilot chains.
The same authors suggest using fairly vague prior distributions, but it is well-known
that when using this practice on models with different dimensions the Bayes factors
turn out to be very sensitive. So, this prior setting may need further justification to
satisfy potential users.

Finally, this approach is not applicable to the case of countable number of models
under consideration. Hence, the number of practical and theoretical difficulties of
this approach suggest it should be used with care. See Gamerman (1997), where
more details can be found.

2. Markov Chains with Jumps
Green (1995) introduced a reversible-jump MCMC strategy for generating from

the joint posterior π(m,θ
m
|y), based on the standard Metropolis-Hastings approach.

The reversible-jump MCMC was also applied by Richardson and Green (1997) for
an analysis of univariate normal mixture; by Nobile and Green (2000), for factorial
experiments using mixture modeling; and Dellaportas and Forester (1999), for
analysis of contingency tables. During reversible-jump MCMC sampling, the
constructed Markov Chain moves within and between models, so that the limiting
proportion of visits to a given model is the required π(m|y)

In general, suppose that the current state of the Markov Chain at time t is (m,
θ

m
) where θ

m
 has dimension d(θ

m
 ) and a move is proposed at time t + 1 to a new

model m� with probability j(m, m�) and corresponding parameter vector θ�
m�

. Then,
a vector is generated from a specified proposal density q(u|θ

m
, m, m�) and (θ�

m
,
 
, u�) =

g
m,m�

 (θ
m
, u) is set for a specified invertible function g

m,m�
 such that g

m,m�
 = g

 
�1

m,m�
 Note

that d(θ
m
) + d(u) = d(θ �

m� 
) + d(u�). Green (1995) showed that, if the new move is

accepted as the next realization of the Markov Chain with probability α = min{1,r},
where

J
)'m,m,|u(q)'m,m(j)m()m|(),m|y(
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with J = ∂(θ�
m�
, u�)/∂(θ

m
, u) denoting the Jacobian of the transformation, then the

chain satisfies the condition of detailed balance and has the required limiting
distribution π(m, θ

m
|y). The condition of detailed balance requires that the

equilibrium probability of moving from a state (m,θ
m
) to (m�,θ�

m� 
) equals that of

moving from (m�,θ�
m� 

) to (m,θ
m
) for details, see Green (1995).

To implement the reversible-jump MCMC, the probabilities j(m,m�) need to be
specified for  every  proposed move, as well as the proposal  distributions q(u|θ

m
,

m, m�), q(u�|θ�
m�
, m�, m) and the function g

m,m�
 These choices do not affect the results

in terms of models selected but may affect crucially the convergence rate of the
Markov Chain. For the probability j(m,m�) one non-informative alternative is j(m,m�)
= (M � 1)�1, for all m, m� ∈ M, when at each state of the chain a move from one
model to other one is always proposed.

Vrontos et al. (2000) proposed a modification of Green�s technique, which they
have successfully implemented in a series of experiments with GARCH and
EGARCH models; this is described as follows: First, they suggest that all the
parameters of the proposed model be generated from a proposal distribution.
Consequently, (θ�

m� 
, u�) = (u,θ

m
) with d(θ

m
) = d(u�) and d(θ�

m�
) = d(u), q(u|θ

m
, m, m�) =

q(u|m�), q(u�|θ�
m� 

, m�, m) = q(u�|m), and the Jacobian in (19) is 1. In this case, the
probability of acceptance of the new move as the next realization of the Markov
chain is given by α = min{1,r}, where

)'m|u(q)'m,m(j)m()m|(),m|y(

)m|'u(q)m,'m(j)'m()'m|'()','m|y(
r

mm

'm'm

πθπθπ
πθπθπ

= (20)

The proposal densities q(u|m�) and q(u�|m) can be chosen by investigation of a
�pilot run� They start the chain from the best available starting values (e.g., the
maximum likelihood estimates when available) and simulate the �within-model�
Markov Chain many times to obtain approximate marginal posterior means and
covariance matrices for each model parameter vector. These estimates are then
used to construct proposal densities q(u|m�) and q(u�|m) taken as multivariate normal
densities.

III. METHODOLOGY

A. The Data
In order to illustrate the estimation and selecting methodologies, the weekly

observations of the US/Colombian (on spot) exchange rate are used. Let er
t
 represent

the Fridays exchange rates, running from October 21, 1991, through December 29
of 1999; that made T = 428 observations. The daily exchange rate corresponds to
the weight average of trading, selling and buying, of U.S. dollars in the open market.
In the event of the market being closed on a Friday, the observation on the previous
Thursday was used.
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Figure 1 shows the raw data; from this and with the help of a unit root test, (See
Enders, 1995), it is easy to conclude that the exchange rate has a unit root, so, as
usual, one works with the first difference of the natural logarithm of exchange
rates, returns, also known as continuously compounded rates of return, (r

t
 = ln (er

t
)

� ln (er
t�1

) for t = 1, ..., T), whose representation is shown in Fig. 2.

Figure 1
Weekly Colombian exchange rate

From Figure 3, which shows the histogram of returns, it is noteworthy that the
skewness and kurtosis coefficients for r

t
 which are 0.8581 and 5.6872, respectively,

are both significantly positive and much larger than common, thus showing
asymmetry and leptokurtosis. As pointed out by Vlaar and Palm (1993), the skewness
could be the result of the asymmetry in the movements of the parity adjustments,
and a high kurtosis could result from a time varying-variance. These two results
lead to considering those distributions different from the normal, whose use is
unlikely to yield appropriate results.

Also, it is clear that the variance is not constant at all, which can be seen from
the Lunjg-Box�s autocorrelation statistic of the squared returns: Q2(12) = 28,32 and
Q2(24) = 44,86 for lags 12 and 24, respectively.
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B. Estimation
Based on the theoretical justification of several models and taken in account the

particular Colombian economy, seven different models were proposed for estimation
and selection among them; They are described below.

Figure 2
Weekly return from colombian exchange rate.

With the aim to implement a fully Bayesian analysis, MCMCs were used to
estimate the models2 , much of them are estimated by the first time from the Bayesian
point of view, which is a new development of this work.

First, an ARMA(1,1) model with normal disturbances was fitted; this model
could be tried in practice when the scholar ignores the fact that the variance is not
constant. In this report, such a model is also used as the reference model, against
which others are to be compared. Non-informative Beta(1,1) from -1 to 13 priors
were chosen for φ

1
 and θ

1
. A N(0,5) as prior for φ

0
 was used; finally, a nearly non-

informative but proper Inverse-Gamma(2.001,0.001), (So, Expected value and
variance equal to 1/1000) was used for σ2.4

2. Maximum Likelihood Estimation (MLE) was tried, but problems getting precise estimations of the variance-covariance
matrix, for some models, restricted its use.

3. In the sense that if  X ~ Beta(1,1) then Y = 2X � 1 ~  Beta(1,1) from �1 to 1. See Jaquier et al (1999)
4. 1/σ2 as a prior for σ2 was tried too, with similar results
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Figure 3
Histogram of returns.

Second, an ARMA(1,1) for the levels of return plus a GARCH(1,1) for the
variance, so, c

t
 in (1) comes from an ARMA(1,1), and V(ε

t 
) = h2

t
 from  (3) with r =

1, and s = 1; still assuming normality, the likelihood function is given by (2). Non-
informative U(�1,1) prior for φ

1
 and θ

1
; 1/α

0
 for α

0
; a N(0,5) for α

0
; U(0,1) for α

1
,

and β
1
, and in order to assure stationarity in (3), any proposal that did not fit α

1
 +

β
1 
 < 1 is rejected. The same priors on φ

0
 as before was used. From initial runs h2

0
turned out to be statistically equal to zero, thus it is set to α

0
 / (1 � α

1 
) as Nelson and

Cao (1992) propose for computational convenience.

Third, an ARMA(1,1) plus a GARCH(1,1) with Student-t distribution, and α
1

+ β
1
 >= 1 are rejected in (3) for stationarity purposes; n > 2 in (4); h2

0
 was set as in

before. Priors: 1/α2
0
 for α

0
; 1/(n � 2)2 on n and α

1
, β

1
 as in the second model φ

0
, φ

1
,

and θ
1
 were treated as in the first model.

Fourth, an ARMA(1,1) plus an EGARCH(1,1), instead of with GED distribution,
therefore, the likelihood is given by (6). Priors: φ

0
, φ

1
, and θ

1
 as above; a N(0,1) was

used as prior for α
0
; N(0,5) for α

1
 for β

1
 an U(-1,1); ϕ

1
 is assumed identically to zero;

and U(0,80) for υ. Any proposal with |β
1
| > 1 was rejected for stationarity purposes.

Fifth, an ARMA(1,1) plus an GARCH(1,1) with a Mixture of two normals as
the error term distribution using (8) as the likelihood. Priors: φ

0
, φ

1
, and θ

1
 as before.

1/α2
0
 for α

0
 for α

1
, and β

1
 U(0,1); N(0,10) for υ; 1/(δ2)2 for δ2; finally, U(0,1) for λ.

Sixth, an ARMA(1,1) plus an GARCH(1,1) with Type-IV Pearson distribution,
hence, the likelihood is computed by using (10). Priors: Inverse-Gamma(2.001,0.0001)
was used for α

0
, U(0,1) for α

1
, and β

1
; (r � 2) following an Inverse-Gamma

(2.001,0.0001); N(0,1) for δ and N(0,5) for µ. The distributions used previously for
φ

0
, φ

1
, and θ

1
 were used here too. The restriction r > 3 is imposed, so the first four

moments from the Type-IV Pearson distribution exist. Again, any proposal with
α

1
 + β

1
 >= 1 is rejected. α

0
<0.0001 were rejected for computational reasons.
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Seventh, and finally, a Stochastic Volatility model with a Student-t distribution
on the error term, expressed in (16) and (15). Non-informative prior U(�1,1) for φ,
a N(0,5) for γ; Inverse-Gamma(2.001,0.0001) for σ2

η; and for υ a U(5,80) was used as
Jaquier et al. (1999) did to assure the t-Student has at least the first-four moments.

Although the use of single versus multiple (parallel) chains in MCMC is an open
discussion, single chains for each model are used in this job because of time and
computing resources limitations. For a recent discussion of this dilemma, the reader
is referred to Mengersen et al. (1999), which contains points in favor of each alter-
native.

Raftery and Lewis� (1996) strategy was implemented here with constant selected
in such a way that the proportions of the proposals accepted were between 20 and
50%, as has become common practice. The update is element-by-element and in
random order. However, when high correlations between parameters in conjunction
with slow convergence were found the blocking update was implemented to improve
convergence.

In every case, a final chain of 80,000 was run and then steps of 50 to 300 were
taken to avoid large autocorrelations in the chains. In that way, first-order autoco-
rrelations no larger than 0.55 were guaranteed.

Convergence of each chain is assessed by applying the Geweke�s (1992) criterion,
which null hypothesis is that stationarity has been reached, and the test-statistic is
suppose to follow a standard normal distribution under H

0
. This test is implemented

by using CODA (See Best et al, 1997).

The mean-vector and Variance-covariance matrices are to be obtained in order
to feed or implement the RJMCMC, as explained later.

C. Model Selection
The model selection exercise consists of applying the Reversible Jump MCMC

algorithm and the posterior probabilities, running 200,000 iterations and showing
the proportion of each 2,000 that model m (m=1, 2, ... 7) is selected. For checking
stability, visual analysis is used. Although there are some fresh results about assessing
convergence in RJMCMC, their value are not well-known yet, as mentioned by
Brooks and Guidici (1999).

For all seven models the same priors mentioned in Section B are to be used. The
proposal densities q(u/m�) and q(u�/m) for each parameter were constructed by using
the MCMC output of the separate model runs described above. These densities are
taken as multivariate normals with mean vectors, consisting of the sample mean
values and covariance matrix equal to the corresponding sample mean vector and
covariance matrix of the parameters in each model.
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IV. RESULTS

A. Estimation5

In the following presentation the return rates are expressed in 0-100 scale, which
was used because of computational and presentational avenues; otherwise, models
which use GARCH component get stuck, it seems because values for go so close to
zero that the algorithm get overwhelmed.

Table 1
Geweke’s convergence z scores for the seven models

Model φ0 φ1 θ1 α0 α1 β1 σ2 n

ARMA(1,1)Normal -0.275 -0-601 0.118 -0.77
ARMA(1,1)+
GARCH(1,1):N -.594 0.966 -1.13 -.002 0.752 -.186
ARMA(1,1)+
GARCH(1,1): t -.948 0.624 -.374 -.439 -.494 0.667 -.873

Model φ0 φ1 θ1 α0 α1 β1 v

ARMA(1,1)+
EGARCH(1,1):GED 0.079 -1.01 1.12 1.28 -1.42 -.581 -1.13

Model φ0 φ1 θ1 α0 α1 β1 λ σ2 n

ARMA(1,1)+
GARCH(1,1):MixN 2.43 2.40 -2.20 -2.90 -.276 1.08 1.57 -2.17 -2.39

Model φ0 φ1 θ1 α0 α1 β1 r σ2 n

ARMA(1,1)+
GARCH(1,1):T-IV P 1.24 0.586 -.538 -0.092 0.801 -1.53 -1.66 -0.82 -.308

Model φ γ υ σ2
η

STOCHASTIC VOL.:t 1.70 -.713 -1.18 -1.52

The Geweke�s Convergence z Scores for the seven models are presented in Table
1, looking to the numbers it is clear that convergence has been reached for almost
every parameter in all models.

The estimation results are presented in Table 2 with standard errors in paren-
theses.6  Although, parameter transformations7 were tried for some models,
convergence was not improved, hence it use was discharged. From Table 2 it should

5. It took between 12 hours 24 minutes and 56 hours and 48 minutes, from the fastest to the slowest model, to made
all the iterations, using a computer with a Pentium I 233 MHz processor, and 64 MB RAM, running under WINDOWS-
98 Second Edition. Times reduce to one third using a Pentium III 700 MHz processor, with the same software and
192 MB RAM.
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be said that except for the non-inclusion of some parameters in most of the models,
no additional work for the exclusion of non-significant parameters in any model
was attempted because time limitations, and because it is not the main purpose of
this work to improve every and/or one specific model.

Fig. 4 presents the resulting chains diagrams and the histograms of the posterior
sample of the parameters of the ARMA(1,1) model. The shape of the posterior
distribution of φ

0
 and σ2 parameters indicate asymmetry, hence deviation from

normality. Figs. 5 to 10 do the same for the GARCH-N,GARCH-t, EGARCH-
GED, GARCH-MixN and GARCH Type-IV Pearson models, respectively.

Table 2
Estimation results of the seven competing models

Model φ
0

φ
1

θ
1

α
0

α
1

β
1

σ2 n

One 0.269 -.107 .112 0.103
(6.6e-3) (0.022) (0.010) (3-1E-3) Two 0.295

Two 0.295 -.586 0.564 0.203 0.490 0.398
(.0041) (.0179) (0.016) (.0024) (0.004) (0.004) Three 0.153

Three 0.153 0.151 -.075 0.119 0.623 0.525 3.20
(0.005) (0.024) (0.021) (.008) (0.01) (.006) (0.06)

Model φ0 φ1 θ1 α0 α1 β1 v

Four 0.045 0.578 -.441 -.484 0.419 0.431 0.864
(0.003) (.032) (.029) (.009) (0.007) (0.009) (0.005)

Model φ0 φ1 θ1 α0 α1 β1 λ υ δ2

Five 0.256 -0.022 0.065 0.047 0.321 0.475 0.247 0.525 2.33
(.013) (.052) (.044) (.009) (.011) (.017) (.015) (.046) (.182)

Model φ0 φ1 θ1 α0 α1 β1 r δ µ
Six -.079 -.0627 1.9e-3 0.111 2.9e-4 0.999 3.17 0.063 -6.1e-3

(.009) (-015) (.013) (3.8e-4) (1.1e-5) (1.8e-5) (8.1e-3) (4.3e-3) (7.4e-4)

Model φ γ υ σ2
η

Seven -.196 0.223 60.70 0.007
(0.023) (0.019) (0.53) (.0016)

B. Model Selection
The processing time for 200,000 iterations, using the same computer as for

estimation, was 16 hours and 23 minutes, for all the seven models, a total of 47
parameters which use above 32 MB of disk-space. Note that, according to Fig. 11,
this is a conservative run length, and less than one-fourth of the run could be sufficient
to achieve the same posterior distributions.

6. Such standard errors refer to the time-series estimates which are asymptotic, the square root of  the spectral
density estimate divided by the sample size.

7. Like logarithm or φ� = ln(1+φ)/(1 � φ), when |φ|<1 hence φ� ∈ ℜ
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Figure 4
ARMA(1,1) Model
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Figure 5
GARCH-Normal Model
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Figure 6
GARCH-t Model
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Figure 7
EGARCH-ged Model
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Figure 9
GARCH-T4P Model
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Table 3
Posterior probabilities and bayers factors of seven competing models

Model Distribution Posterior Prob. Bayes factor

ARMA(1,1) NORMAL 0.00001 1
ARMA(1,1)+GARCH(1,1) NORMAL 0.00001 1
ARMA(1,1)+GARCH(1,1) t 0.00003 3
ARMA(1,1)+EGARCH(1,1) GED 0.00001 1
ARMA(1,1)+GARCH(1,1) Mixt Normal 0.00005 5
ARMA(1,1)+GARCH(1,1) T.IV Pearson 0.99990 199988
STOCHASTIC VOL t 0.00001 1

The RJMCMC results and Bayes factor are displayed in Table 3; which shows
the posterior probabilities and Bayes Factors for the seven models. The last column
refers to the relative weight against the worst models, ARMA(1,1), SV, and

Figure 10
SV-t Model
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ARMA+GARCH. According to this results it is very clear that model six,
ARMA(1,1)+GARCH(1,1) with Type-IV Pearson distribution over perform the
rest of them, with posterior probability 100%.

Figure 11 shows the convergence behavior of the chain. That figure illustrate
the probability of each of the seven models across the sweeps calculated ergodically
every 2,000 iterations. Note that the only model that is visited very often in the
Reversible Jump MCMC algorithm is model six.

Next exercise consist in rerun the chain, this time with the six less probable
models, that is to say all but model six. Analogous results are obtained, this time
that outperforming model being model five, ARMA(1,1)+GARCH(1,1) with
Normal Mixture Distribution. Neither figure nor table are presented for this case.

Additionally, a chain of the same length was run with only the less probable five
models. This time the favored model is ARMA(1,1)+GARCH(1,1) with Student-t
distribution.

Finally, an exercise with models one, two, four, and seven was run. Figure 12
and Table 4 show the exercise result with only the four more improbable models.
In this case the transition probabilities, j(m,m�), were taken as inversely proportional
to the number of parameters on each model. This exercise provide evidence that
model four is a posteriori the fourth most probable after models six, five, and three,
in that order.

V. CONCLUSIONS
In this paper the important issue of model estimation and model selection on

time-varying volatility models was addressed, using a Bayesian approach and MCMC
methods; this offers advantages over other competing alternatives.

The two more important approaches to time-varying volatility were considered
(SV and GARCH). From the results Bera and Premaratne�s GARCH were widely
favored; after that the Normal Mixture is selected as the best. However, it is clear
that checking work for assumptions should be done on each of the favored models.

It should be clear that all the results from models choices are conditional to the
seven models initially selected; if other models are included or some are not, the
results could change. Similar comments as those by George (1999) on Hoeting et al.
(1999) apply here. In practice there will always be models left out, as GARCH
models of high order or SV with many alternative distributions; unfortunately, the
option of including many other models at the same time is highly limited by
computational resources.

The robustness of the RJMCMC to different priors could be tested but much
more computational time required discourages this practice.
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Figure 11
Convergence Behavior of the seven models

Figure 12
Convergence behavior of FOUR of the seven models.
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Table 4
Posterior probabilities and bayes factors of four of the seven models

Model Distribution Posterior Prob. Bayes factor

ARMA(1,1) NORMAL 0.0097 3.070
ARMA(1,1)+GARCH(1,1) NORMAL 0.1796 56.764
ARMA(1,1)+EGARCH(1,1) GED 0.8075 255.132
STOCHASTIC VOL t 0.0032 1.000

When the main purpose of the model selection exercise is to forecast, work on
Bayes model averaging will be easily implemented, once the RJMCMC has been
run and results have been saved (See Hoeting, et al., 1999 or Clyde, 1999, and the
specific GARCH and EGARCH case in Vrontos et al., 2000).

A fruitful avenue for future research would be the parsimonious incorporation
of these features in multivariate models of stochastic volatility, see Jaquier etal.
(1999).

As for the specific case of the Colombian exchange rate, the effect of exogenous
shocks should be modeled with dummy variables, as Copeland and Wang (1994)
did; such task could be the topic of forthcoming work to be reported elsewhere.

Finally, and no less important, more work on computational algorithm and
randomness behavior faced when working with values extremely near zero, as
described at the beginning of Section 4.1, is required by specialists.

It seems wise to end with a quote by G. E. P. Box, referenced by Piorier (1995, p. xi):

�All models are wrong but some are useful�.
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