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ABSTRACT

This paper argues that persistence is not an invariant feature of a time series, but
depends on the context in which the series is used: as the parameters of any dynamic
model are defined relative to a particular information set, any change in the set of
conditioning variables might affect the resulting estimates. We define persistence of a
variable as the rate at which its autocorrelation function decays to zero, and show that
inference about persistence of a variable is invariant to the addition of other conditioning
variables only if those variables do not Granger-cause the variable of interest. Furthermore,
we establish that measured persistence is a function of the model selected in a more
fundamental way in the case of unstable systems. These findings suggest that, unless more
restrictions derived from economic theory are imposed, issues such as the effectiveness of
stabilisation policies cannot be settled empirically, and the debate between Keynesian
and RBC theorists will remain inconclusive.

Keywords: Persistence, autocorrelation function, conditioning information set,
probabilistic structure, dynamic models, Granger causality, cointegration.

JEL classification: C22, C32, E32.

REVISTA DE ECONOMÍA DEL ROSARIO, 4 (DICIEMBRE 2001) 117-142



118 REVISTA ECONÓMICA DEL ROSARIO, 4 (DICIEMBRE 2001)

1 Christiano and Eichenbaum (1989), however, pointed out that this inference was very sensitive to the choice of
ARMA specification from a set of  models which had equally good fit.

2 For a general discussion of  the econometric and policiy issues involved, see Campbell and Perron (1991), and
McCallum (1993).

3 Lippi and Reichlin (1992) pointed out that another measure of  persistence often used in empirical studies (see e.g.
Clark (1987), or Watson (1986)), which is based on standard unobserved components models (UCARIMA) developed
in Beveridge and Nelson (1981), is necessarily less than one as a mathematical consequence of  the structure of
these models.

I. INTRODUCTION
Persistence, i.e. the extent to which events today have an effect on the whole

future history of a stochastic process, is a central issue in macroeconomic theory
and policy. For example, in their seminal paper Nelson and Plosser (1982) argued
that the presence of unit roots meant that shocks were persistent, and hence that
the data were consistent with Real Business Cycle (RBC) models, in which most
shocks to GNP were technology shocks. Campbell and Mankiw (1987a, 1987b), on
the other hand, suggested that an ARMA(2,2) model provided the best description
of the data for US real GDP, and hence that this is generated by a difference-stationary
(DS) (or unit root) process. They also concluded that the long-run response of US
GDP to a unit shock, given by the cumulative response function A(1), is greater
than 1, which implies that there is no trend-reversion.1

De Long and Summers (1988) claimed that stabilisation policies were more
effective in the post-war period, when a larger fraction of the variance of US GNP
could be explained by a stochastic trend. Numerous studies attributed the high
degree of persistence exhibited by GDP to supply factors (see e.g. King et. al. (1991),
Shapiro and Watson (1988), and Blanchard and Quah (1989)), although West (1988)
showed that persistence is also consistent with Keynesian models of business cycles.2

Similarly, a lot of effort was devoted to estimating the degree of persistence of
unemployment and to pinning down its causes (see e.g., Blanchard and Summers
(1986), and Alogoskoufis and Manning (1988)).

Various statistics have been proposed to capture the persistence of macroecono-
mic time series. Cochrane (1991a) argued that, because any time series with a unit
root can be decomposed into a stationary series and a random walk, and the latter
can have arbitrarily small variance, persistence should be measured as the ratio of
the variance of the change in the random walk component to the variance of the
actual change (see Cochrane (1988)). Furthermore, unit root tests are not informative
about persistence (see Cochrane (1991b)). Firstly, the argument that series which
are more likely to reject unit root tests are also those with �less persistent� shocks
has no theoretical justification. Secondly, the persistence of univariate prediction
error shocks can be very different from that of multivariate prediction error shocks,
and also of the �true� underlying shocks.3
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In a different context, Cavaglia (1992) demonstrated how a measure of persistence
may be obtained through the use of Kalman filtering. Finally, an alternative test
statistic, known as rescaled range statistic (R/S), was first introduced by Hurst (1951)
and then refined by Mandelbrot (1972, 1975), and Lo (1991), whose modified rescaled
range statistic converges to a well-defined random variable under the null hypothesis
of short-term dependence, and can distinguish between short-run and long-run
dependence.

All the studies considered so far derived measures of persistence in the context
of univariate models, i.e. using a particular conditioning information set. The
question arises, however, whether estimates of persistence are invariant to model
selection: would inference stay the same if a multivariate framework was adopted?
Cochrane and Sbordone (1988), for example, provided a measure of persistence for
GNP and stock prices which makes use of multivariate information. However,
their statistic relies on strong non-testable identifying restrictions. Lupi (1993) also
suggested that measures of persistence are not invariant to the information set, and
that in a general probabilistic framework they are inadequate to capture persistence
in terms of non-mixing properties.

Evans and Reichlin (1994) go one step further: they show that a widely used
measure of persistence, i.e. the Beveridge-Nelson (BN) decomposition into trend
and cycle, is non-increasing in the number of conditioning variables, and it is strictly
decreasing if the additional conditioning variables Granger-cause the variable of
interest, say y

t
 - a larger information set implies that more of y

t
 is forecastable and

ascribed to the cyclical component, therefore resulting in a lower measure of
persistence. Cochrane (1994) illustrates the empirical importance of this insight:
the addition of Granger causal variables dramatically alters measures of transitory
components in US GNP and stock prices. The same result might account for the
fact that estimates of the cyclical component in aggregate output derived from
multivariate systems using sectoral data exhibit larger variance than in univariate
models of output (see e.g. Lee, Pesaran and Pierse (1992)).

This paper also examines the issue of whether persistence of a macroeconomic
time series is a model invariant property. However, it differs from the existing
literature in three respects. Firstly, the argument underlying our analysis is that
any dynamic model can be interpreted as a statistical parameterisation of the
probabilistic structure of the variable of interest, based on an implicit conditioning
information set (see Spanos (1995b)). Therefore changes in the set of conditioning
variables are likely to affect statistical inference.4 Secondly, we define persistence as
the memory of a process, with the latter being the rate at which the autocorrelation
function of y

t
 decays to zero - this is more common in the theoretical literature on

4 For instance, Spanos (1990) showed that it is not generally the case that the unit root found in the autoregressive
(AR) representation of  the series will persist in the context of  a vector autoregressive (VAR) representation, and
that the invariance conditions amount to Granger noncausality restrictions.
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time series (see Priestley (1981)). Thirdly, we show that whether persistence is a
model invariant property depends not only on causality restrictions, but also on
the stability of the system - measured persistence of a variable y

t
 is a function of the

model selected in a more fundamental way in the case of unstable systems.

The layout of the paper is the following. Section II defines formally the concept
of persistence, and addresses the question whether model selection affects the
estimated degree of persistence of a given variable under the assumption that the
system is dynamically stable. Section III analyses the implications of dynamic
instability of a system for the invariance conditions of measured persistence. Section
IV illustrates the theoretical results using two empirical examples. Section V draws
some conclusions.

II. MEASURING PERSISTENCE IN STABLE SYSTEMS
Let us consider the process { }Tt,y t ∈ , and let us also assume that it exhibits

normality, Markovness and stationarity. These assumptions about its probabilistic
structure imply that { }Tt,y t ∈  can be described by the following formulation:
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Assuming that the relevant conditioning information set is given by σ(
 
y

t�1
),

then the regression function ))y(/y(E 1tt −σ  gives rise to the usual homoscedastic
AR(1) representation of y

t
:

t11t0t uayay ++= − (2)

Where t1u  is a white noise process. The parameters a y a
0
 are related to the

moments of the joint distribution );y,y(f 1tt ϑ−  through the following relations:
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)a1(a y0 −= µ (3a)

Let us now define persistence as the effect of a 1 percent innovation on the long-
run level of a series, say ty . This definition implies that persistence can be seen as
the memory of ty , which is the rate at which the autocovariance (or, alternatively,
the autocorrelation) function decays to zero (see Priestley (1981)). Intuitively, this
is because the memory of a series indicates the rate at which a dynamic system
returns to its initial state, which could be any steady state, after being perturbed by
a shock.5 If the memory of the process dies out as time passes by, then persistence is

,
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small and eventually becomes zero, whereas in the case of constant memory, i.e.
when the system never returns to its initial state after a shock, persistence is constant.
In other words, the faster the rate at which the autocorrelation function vanishes,
the smaller the degree of persistence.

The assumptions of Markovness and stationarity made about the probabilistic
structure of the process under consideration together imply that the autocovariance
function of (2) decays at an exponential rate given by:

τ
τ στ a)0()(c)y,y(Cov yytt ==+ (4)

or, in terms of the autocorrelation function:

τ
τ τρ a)()y,y(Corr ytt ==+ (4a)

with 1a <

Clearly, the smaller the absolute value of a is, the faster is the rate at which the
autocorrelation function approaches zero. This leads to the selection of a as a natural
measure of persistence for the system (2). It should also be noted that in this case
the autocorrelations decay to zero so fast that they are summable:

∑
∞

=

∞<
0

y )(
τ

τρ (4b)

It can be shown that (4b) is a sufficient condition for ergodicity (see Priestley
(1981)).

It must be noted that { }ty  is by construction a second-order stationary process,
as indicated by the covariance structure given by (1). If, on the other hand, { }ty
were a process which satisfies the difference equation (2), with tu  being a white
noise process, 1a <  and 0y0 = , then { }ty  would be second-order stationary, but
only asymptotically. This means that it would not attain stationarity until it had
�forgotten� its initial starting value (see Priestley (1981)).

Next, let us consider the case where { }Tt,yt ∈  is correlated with another process
{ }Tt,xt ∈ , which implies that we should consider the vector stochastic process
{ }Tt,Zt ∈ , where )'x,y(Z ttt = , instead of the two independent processes { }ty

5 In the literature, persistence is normally defined as the value towards which the impulse response function converges
in the case of  I(1) variables, and as the area under the impulse response function (which would be infinity if  the
variable was non-stationary) for an I(0) series. In both cases, this corresponds to the sum of  the coefficients of  the
moving average representation of  the process. Our definition is basically equivalent.



122 REVISTA ECONÓMICA DEL ROSARIO, 4 (DICIEMBRE 2001)

and { }tx . Let us impose the same probabilistic structure on { }Tt,Zt ∈ :
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where in general )'1()1( ΣΣ ≠ , since )1()1( xyyx σσ ≠ . In the stationary environment
being considered, )0(Σ  is a positive definite matrix.

The individual elements of )0(Σ  and )1(Σ  are:
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It is important at this stage to note that, depending on the conditioning one
chooses, one may have different dynamic models, namely VAR, or DLR (Dynamic
Linear Regression) models. If the conditioning information set is chosen to be

),Z( 1t −σ  the relevant regression function becomes:

=− ))Z/(Z(E 1tt  a
0
 + 1tAZ − (6)

which in turn gives rise to the usual VAR model:
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and 1)0()1(A −= ΣΣ (7b)
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and U
t
 is a two-dimensional white noise process.

The elements of A are related to the moments of the joint distribution
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As for the conditional covariance matrix, we have:
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On the other hand, if the relevant information set is chosen to be { )y(I 1t −= ,
,xX tt = },xX 1t1t −− =  then the relevant regression function is given by

1t2t11t111t1ttt1tt xbxbyac)xX ,xX ),y(/y(E −−−−− +++===σ (9)

which gives rise to the Dynamic Linear Regression model for y
t
:

t11t2t11t11t exbxbyacy ++++= −− (10)

with the statistical parameters of interest b = [ ]'b,a,b 211  being related to the moments
of the joint distribution );Z,Z(f 1tt ϑ−  through the following relationships:
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More conveniently, one can express the parameters of interest in the DLR as
functions of parameters of interest in the VAR in the following way:

211111 abaa −= (11a)

[ ]22121 /ωω=b (11b)

221122 abab −= (11c)
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11

, a
21
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 and are defined as previously.

Again the probabilistic structure of the system results in an exponentially
decreasing autocovariance function for y

t
 similar to (4). This time, though, persistence

of the system is measured by a
1
 as defined in (11). In general 1aa ≠ , and therefore

measured persistence of y
t
 depends on the selected dynamic system.

It must be noted that persistence in (10) is also determined by the rate at which
the autocovariance or the autocorrelation function vanishes. However, the
autocovariance function of (10) is defined in terms of the joint distribution of ktt y,y +
conditional on 1t1ttt xX ,xX −− == . More specifically, the autocovariance function
of (2) is defined as:
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whereas the conditional autocovariance function of (10) is defined as:
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This in turn implies that the rate at which the autocovariance function of (10)
vanishes, as measured by a

1
, will now be a function of the moments of the joint

distribution )Z,Z(f 1tt − , whereas is a function of the moments of )y,y(f 1tt − .

Let us now derive conditions under which the two measures of persistence will
be the same:

Proposition 1: Persistence of y
t
 will be invariant to models (2) and (10), if and

only if there is no Granger causality between y
t
 and x

t
 in any direction. 6

Proof

(If part) Assume that 11aa = . This implies, given (8a), that 0)0((  0a xy12 ≠= σ
in general). Next, if 111 aa = , then it follows from (11a) that 0a21 = , since b

1
 in

general is different from zero. Therefore, if 111 aaa == , then 0aa 2112 == .

(Only if part). Assume that 0a12 = ; then (8a) implies that 11aa = . Also if 0a21 = ,
then 111 aa = . Therefore, if 0aa 2112 == , then 111 aaa == .

Alternatively we can express the noncausality restrictions 0a12 =  and 0a21 =
in terms of the moments of the joint distribution )Z,Z(f 1tt −  as follows:

)0()1()0()1(0a yxyyyx12 σσσσ =⇔= (GNC 1)

)0()1()0()1(0a xyxxxy21 σσσσ =⇔= (GNC 2)

6 Note that in the context of  a VAR(1) system (and hence of  its reparameterisation as a DLR model), Granger
causality is the same as long-run causality. In the more general case with a lag polynomial of  order n, though,
Granger causality cannot distinguish between short- and long-run causality: a variable y may have transitory effects
on another variable x, but the long-run behaviour of  x can still be invariant to the behaviour of  y (see Hall and
Wickens (1993) for more details).
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These restrictions, together with the relationships given by (10a), imply the
following parameters for model (10):
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where clearly aa1 = . It is important to note that aa1 =  if and only if 0aa 2112 == .
For example, if one assumes absence of causality in only one direction, e.g. 0a12 = ,
then the parameters of model (10) will be totally different from those in (7). In
particular a

1
 will be equal to:
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The following points are noteworthy:

1. The notion of non-causality which is relevant here is that of Granger non-
causality, according to which x does not cause y if past values of x have no
usefulness in predicting y. More formally, )y/y(f)Z/y(f 1tt1tt −− = , which
under normality is equivalent to saying 0a12 = .

2. Granger non-causality should be distinguished from the case in which
instantaneous non-causality is also assumed. The latter case implies

)y/y(f)Z,x/y(f 1tt1ttt −− = , and this condition does not hold if only
0a12 =  is assumed. This alternative notion of non-causality should be

expressed in terms of the parameters of )Z,x/y(f 1ttt −  as: 0bb 21 == . If
this condition holds, then, from (11), 0a12 = , but the opposite is not true in
general.
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3. The preceding discussion makes clear that 0a12 =  can be compatible with
0b2 ≠ . In fact b

2
 can be regarded as the difference between two components.

The first is the direct effect of 1tx −  on y
t
 when the contemporaneous

dependence between y
t
 and x

t
, which is measured by a

12
, is left unmodelled,

and the second is the indirect effect of 1tx −  on y
t
 through the contemporaneous

dependence between and y
t
, and x

t
 intertemporal dependence between x

t
 and

1tx − , which is measured by 221ab .

GENERAL RESULT FOR STABLE SYSTEMS: If a variable y
t
, which is in a steady state,

is hit by a shock, its persistence in alternative stable linear systems such as (2) or
(10) decreases at an exponential rate (system invariant feature of persistence).
However, the exponential rate, in general, is not the same in the two systems (system
dependent feature of persistence). Persistence will be model invariant if and only if
there is no Granger causality in any direction among the variables involved. Needless
to say, this result refers to the effect of the shock for a finite period of time (τ). If

∞⇒τ  persistence in both systems will be the same and equal to zero.

It must be noted that so far { }Tt,yt ∈ , and { }Tt,Zt ∈  have been assumed to be
stationary around the fixed means µ

y
 and µ respectively. Alternatively, one could

assume stationary around some deterministic trend polynomials, without changing
the covariance structure. For instance, one could assume that:
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The only changes in the regression model would be the addition of a deterministic
trend polynomial of the same order, whereas the relationship of the autoregressive
coefficient with the moments of the distribution would remain unaltered.

III. PERSISTENCE IN UNSTABLE SYSTEMS
Our analysis so far has only been concerned with stable systems, i.e. the case

when 1a1 <  in (2), both eigenvalues in (7) are less than one, and 1a1 <  in (10). Let us
now also consider the unit roots case, and hence let us assume that the process
{ }Tt,yt ∈  is a general Wiener process:
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σσ

(13)

where m(t) is a trend polynomial of order n, and ( )st −σ  is a constant, which is a
function of the distance between the two points in time. By making the further
assumption of Markovness, we obtain:



128 REVISTA ECONÓMICA DEL ROSARIO, 4 (DICIEMBRE 2001)


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
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
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




−




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
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)1t(m

)t(m
N~

y

y

yy

yy

y

y

1t

t

, σσ
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(14)

Note that a general Wiener-Markov process as defined in (14) does not have
independent and stationary increments unless i) m

y
(t) is a linear function of t and ii)

)0()( yy στσ =  for every τ. The proof of the first part of this statement is
straightforward, since for any polynomial m

y
(t) of order n, ]y[E t  will be a trend

polynomial of order n-1. The second part can be proved by examining the
autocovariance function of y

t
:

a)  )1(2)0()1(2t)0(2

)y,y(Cov2)y(Var)y(Var]y[Var

yyyy

1tt1ttt

σσσσ
∆

+−−=
−+= −−

(14a)

Clearly Var(y
t
) is a function of t, unless )1()0( yy σσ = , in which case the variance

of the increments becomes )0(yσ .

b)   )1(2)()1()()2(

)1(2t)(t)2(t)1(2]y,y[Cov tt

+−+++++
+−−+−+=−

ττστστττστσ
ττστστστσ∆∆ τ

(14b)

It is apparent that ]y,y[Cov tt τ∆∆ −  is a function of both t and τ unless )0()( στσ =
for every τ, in which case the covariance of the increments becomes zero.

The regression and skedastic functions then become:

1t
y

y
y

y

y
y1tt y

)0(

)1(
)1t(m

)0(

)1(
)t(m)y/y(E −− +−−=

σ
σ

σ
σ

(15)

)1t)(0(

)]1t)(1([
t)0()y/y(Var

y

2
y

y1tt −
−

−=− σ
σ

σ (15b)

or

taa
)0(

)]1()0([

)0(

)1(
)y/y(Var 2

y

2
y

2
y

y

y
1tt +=

−
+=− σ

σσ
σ
σ

(15c)

Note that in the general Wiener case the autoregressive coefficient is still time-
independent; the conditional variance, however, is a function of t.

If the polynomial m(t) is linear in t, and under the unit root restriction
)0()1( yy σσ = , the above regression function gives rise to the usual random walk

with drift model:
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1tyt yy −+= µ (16)

Whereas if m(t) is a quadratic function of t, one obtains the random walk model
with a drift and linear trend:

1t1yyt yty −++= µµ (17)

with the conditional variance in both cases being equal to:

)0()y/y(Var 1tt σ=−

which is free of t.

The covariance function of the unstable model (16) now decreases at a linear-like
(not exponential) rate. This can be shown as follows: In the case of a Wiener-Markov
process with the unit root restrictions, the covariance function )y,y(Cov tt τ+  is not
a function of the distance τ , but rather of the actual date t. Assuming that 0>τ ,
we have:

t)0()t,t(min)0()y,y(Cov)(c yytt στστ τ =+== + (18)

or

2/1

2/1
yy

y
tt t

t

)]t)(0(t)0([

t)0(
)y,y(Corr)( 







+
=

+
== + ττσσ

σ
τρ τ (18b)

Equation (18) represent the case known in the literature as �constant memory�.
Indeed, regardless of the distance between y

t
 and τ+ty , their autocovariance remains

constant. On the other hand, the autocorrelation function given by (18b) suggests
that the correlation between y

t
 and τ+ty  decreases as τ increases at a linear-like rate.

This results from standardising the covariance between ty  and τ+ty  using the square
root of the product of the corresponding variances. In such a case, the autocorrelation
function appears to vanish as ∞⇒τ , implying pseudo asymptotic independence.

The difference from the stable case in terms of the autocorrelation function is
that the autocorrelations decrease at a linear-like and not exponential rate. This
results in correlations decaying to zero so slowly that they are not summable:

∑
∞

−∞=

∞=
τ

τρ )( (18c)

In terms of the autocovariance function, stable systems exhibit an exponentially
decreasing memory, whereas unstable systems are characterised by constant memory.
Persistence in unstable systems, therefore, remains constant even for ∞⇒τ .
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Let us also assume that { }Tt,xt ∈  has a unit root in its autoregressive
representation, and in particular that it is a random walk with drift:

1txt xx −+= µ (19)

Where, as previously, the unit root restriction takes the form: ).0()1( xx σσ =  If
we now assume that y

t
 and x

t
 are correlated, then we should consider the vector

stochastic process )x,y(Z ttt ′= , which is assumed to have the same probabilistic
structure as before (i.e. it is a Wiener, Markov vector stochastic process):


















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
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−−′
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
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




−





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
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∑∑

− )1t)(0()1t()1(

)1t)(1(t)0(

)1t(m

)t(m
N~

Z

Z

1t

t

(20)

In a non-stationary environment, ΣΣΣΣΣ(0) will not always be positive definite - it
might also be positive semi-definite, in which case ΣΣΣΣΣ(0)�1 does not exist. (This case is
analysed in subsection A). For the time being we assume that ΣΣΣΣΣ(0) is invertible, i.e.
ΣΣΣΣΣ(0)�1 exist, and therefore the conditional mean and conditional covariance, of Z

t
are given by:

1t

1t
11

1tt

AZ)1t(Am)t(m

Z)0()1()1t(m)0()1()t(m)Z/Z(E

−

−
−−

−

+−−=

+−−= ∑ ∑∑ ∑
(20a)

)1t()1(At)0(

)1t()1()0()1(t)0()Z/Z(Cov '1
1tt

−′−=

−−=

∑∑
∑ ∑ ∑∑ −

−
(20b)

where m(t) is a trend polynomial of known order, and ΣΣΣΣΣ(0) and ΣΣΣΣΣ(1) are defined as in

(5a). Having chosen ( )1tZ −σ  to be the relevant conditioning information set, we
get, as in the case of stable systems, a VAR model:

t1t0t VAZ)t(aZ ++= − (21)

where now the vector of constants is a function of time, and the conditional

covariance matrix )Ù(t1)(t(1)'A(0)t)/Z(ZCov 1tt =−Σ−Σ=−  is also a function of
time. More specifically:

)1t(Am)t(m)t(a0 −−= (22)

and the individual elements of )t(Ω  are the following:
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[ ] )1t()1(a)1(at)0()t( yx12y11y11 −+−= σσσω (23a)

[ ] )1t()1(a)1(at)0()t( x12yx11yx12 −+−= σσσω (23b)

[ ] )1t()1(a)1(at)0()t( yx22y21xy21 −+−= σσσω (23c)

[ ] )1t()1(a)1(at)0()t( x22yx21x22 −+−= σσσω (23d)

On the contrary, the matrix A is time independent, being given by:

∑∑ −= 1)0()1(A
(24)

and therefore A is defined, as in the case of stable systems, by (7c). In this general
case the VAR is not operational since the elements of the conditional covariance
matrix are functions of time.

Alternatively, if we choose { }1t1ttt1t xX,xX),y(D −−− === σ  as the relevant
conditioning information set, we obtain again a reparameterisation of the VAR
which is the usual DLR model:

y
t 
= c

1
(t) + a

1
 (t)y

t�1
 + b

1
(t)x

t
 + b

2
(t)x

t�1
 + v

1t
(25)

where:

a
1
 (t) = a

11
 � b

1
 (t)a

21
(26a)

b
1
 (t) = [ω

12
 (t) / ω

22
 (t)] (26b)

b
1
 (t) = a

12
 � b

1
 (t)a

22
(26c)

and

Var (y
t
/Z

t�1
, X

t
 = x

t 
) = s

11
 (t) � [s

12
 (t) s

21
 (t)/s

22
 (t)] (26d)

and a
11

, a
21

, a
22

, ω
ij
 (t) are defined as before. In this general case DLR is not an

operational model since its parameters are functions of time.

Under what condition does (25) become operational? It can be seen that the
source of parameter-time dependence in the DLR is the time dependence of
Cov (Z

t
/Z

t�1 
). Therefore, the conditions under which the DLR becomes

operational must be identical to the conditions that make Cov (Z
t
/Z

t�1 
) independent

of t.
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So far we have not restricted the time-homogeneity structure of { }tZ  by imposing
the unit root restrictions for { }ty  and { }tx  which, as we said, take the form:

).0()1( yy σσ =   and ).0()1( xx σσ = . By imposing these restrictions we obtain:

∑ 







=

)0()1(

)1()0(
)1(

xxy

yxy

σσ
σσ

Under these restrictions, however, Cov (Z
tt
/Z

t�1 
) is still time dependent. This in

turn implies that, if y
t
 and x

t
 are I(1), then both VAR and DLR models are in general,

non-operational.

Let us look at Cov (Z
t
/Z

t�1 
).  more closely. From (20b) it is straightforward to

see that [ ] )'1(At)'1(A)0()Z/Z(Cov 1tt ÓÓÓ +−=− . This enables us to argue that
necessary and sufficient conditions for Cov (Z

tt
/Z

t�1 
) to be time-independent take

the form:

[ ] 0)'1(A)0( =−∑ ∑ (26b)

Proposition 2: Necessary and sufficient conditions for (26b) to be true are:

)0()1( yy σσ =

)0()1( xx σσ = (26c)

)1()1()0( xyyxyx σσσ ==

which is equivalent to Granger non-causality between y
t
 and x

t
, in the sense that

a
21

 = a
12

 = 0 (see GNC1-2). The proof of this proposition is trivial.

It can also be shown that under (26c) and the univariate unit root conditions
)0()1( yy σσ =  and )0()1( xx σσ = , the matrix A becomes equal to the identity

matrix. This in turn implies the absence of Granger causality in any direction between
y

t
 and x

t
. Obviously, in such case both eigenvalues of A are equal to unity: 121 == λλ .

The DLR model has now become operational since

∑ 







==− '

22
'
21

'
12

'
11

1tt )'1(A)Z/z(Cov
ωω
ωω

with parameters:

a
1
(t) = a

11
 = 1 (26e)
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[ ] [ ](0)(0)b xyx
'
22

'
121 // σσ=ωω= (26f)

b
2
 = �b

1
a

22
 = �b

1
(26g)

and

[ ] )0(/)0()0()xX,Z/y(Var x
2
yxytt1tt σσσ −==− (26h)

Equations (26e) to (26h) make it clear that even in the case of no Granger causality
in any direction between y and x, the AR representation of y

t
 is not equivalent to its

DLR representation, unless 0)0(yx =σ , i.e. unless there is no contemporaneous
dependence between y and x. Persistence, however, will be the same, since equation
(26e) enables us to argue:

Proposition 3: persistence will be invariant to models (16) or (25) if and only if
condition (26c) holds, or, in other words, if there is no Granger causality among
the variables involved.

In the presence of Granger causality, however, and under the invertibility of
ΣΣΣΣΣ(0), persistence in the context of (25) is not definable since a

1
 is a function of t. In

this case, we can say that the persistence of the series is not constant over time, in
the sense that the effect of a 1 percent change in the innovation at time t = s

1
, is

different from that of an increase in innovation at t = s
2
.

A. Singular versus non singular ΣΣΣΣΣ(0)
So far the analysis has been carried out under the maintained hypothesis that

ΣΣΣΣΣ(0) is positive definite matrix, which ensures the existence of ΣΣΣΣΣ(0)�1. Positive
definiteness of ΣΣΣΣΣ(0) is equivalent to saying that the correlation coefficient between

y
t
 and x

t
 is different from one, i.e. 1yx ≠ρ , or that [ ] )0()0()0( yxxy

21

σσσ > . This
condition is ensured if and only if y

t
 and x

t
 are linearly independent in an exact

sense, i.e. if there is no scalar 0k ≠  such that Pr(y
t
 = kx

t 
) = 1. In the stationary

environment given by (5), this is always true. In the non-stationary case described
by (20), this can also be true if y

t
 and x

t
 do not share a common stochastic trend (the

case analysed so far). If, however, the stochastic behaviour of y
t
 and x

t
 is governed

by a common trend, then 1yx →ρ  very fast. In such a case ΣΣΣΣΣ(0), being positive

semi-definite, will be singular. This is the case commonly referred to as cointegration
between y

t
 and x

t
, where the first two moments of the conditional distribution

f(Z
t
/Z

t�1 
) are not given by (20a) and (20b), but rather:
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∑ ∑ ∑∑ −
−−

− +−−= 1t
11

1tt Z)0()1()1t(m)0()1()t(m)Z/Z(E (27a)

∑ ∑ ∑ ∑ −−= −
− )1t()'1()0()1(t)0()Z/Z(Cov 1

1tt (27b)

where ΣΣΣΣΣ(0)�1 is the generalized inverse of ΣΣΣΣΣ(0), i.e. it is such that:.

∑ ∑ ∑∑ =− )0()0()0()0( 1

This case has been examined by Spanos (1989), who proved that under the unit
root restrictions σ

y
(1) = σ

y
(0), σ

x
(1) = σ

x
(0), and singularity of ΣΣΣΣΣ(0), the conditional

covariance matrix becomes:

∑=− )0()Z/Z(Cov 1tt (27c)

which is free of t, implying that DLR model described by (25) becomes operational.
The statistical parameters of interest in this model are related to those of the VAR,
under cointegratig restrictions, through the following relationships:

)aa(abaa 1
2211211111
−+=−= (28a)

[ ] 21
xy1 )0(/)0(b σσ= (28b)

b
2
 = b

1
 (1 � a

11
 � a

22
) (28c)

The cointegration case is very interesting because under cointegration the
coefficient becomes less than unity, which results in a stable DLR model. This
occurs because the cointegration restrictions, as described by |ΣΣΣΣΣ|

 
=

 
0, do not allow

a
12

 and a
21

 to be simultaneously zero, which ensures the existence of Granger causality
in at least one direction. This in turn implies, through (28a) and (8a) and given fact
that b

1
 is now positive, that a

1
 will be less than one.

Another way to show this is the following. First, consider the relation between
the eigenvalues of A and the elements of A:

[ ]
2

)Adet(4)aa(aa
,

212
22112211

21
−+±+=λλ (29)

in the absence of cointegration λ
1
 = λ

2
 = 1, and therefore the condition for no

cointegration takes the form:
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(a
11

 + a
22 

) � (a
11

a
22

 � a
12

a
21 

) = 1 (30)

if a
12

 = a
21

 = 0, then the form (8) it follows that a
11

 = a
22

 = 1, and hence (30) holds.
This means that a sufficient condition for (30) to hold, i.e. for no cointegration, is
Granger non-causality in any direction. Therefore, a necessary condition for
cointegration amounts to Granger causality in at least one direction. If this is the

case, i.e. if either 0a12 ≠  or 0a21 ≠  or both, then (8) implies that either a
11

 < 0 or
a

22
 < 0 or both. This in turn implies that:

1aaa 1
22111 <+= − (31)

Here persistence of y
t
 depends on the model selected in a more fundamental

way than in stable systems. That is, although persistence of y
t
 is constant in the

context of model (16), it decreases at an exponential rate in the context of model
(25) with cointegrating restrictions.

Before we present some empirical results, it is worth discussing briefly how
often in practice one encounters a situation where Granger causality in at least one
direction coincides with no cointegration (non-singular ΣΣΣΣΣ(0)), thus yielding non-
operational models. Lets us assume that 0a12≠  and a

21
 = 0. This clearly invalidates

condition (26c), and generally results in a non-operational VAR and DLR models.
The matrix A then takes the form:
















−

=
10

a
)0(

)0(
a1

A 12
y

xy
12 σ

σ

and  
1

)0(

)0(
a2)A(tr 121

y

xy
12 +=+=−= λλλ

σ
σ

   (32)

No-cointegration can be though of a situation in which both λ
1
 and λ

2
 are greater

than or equal to one. If one of the eigenvalues is less than one, then the system is
cointegrated. This implies that, under no cointegration, the sum of the eigenvalues
must be greater or equal to 2, which means that λ

1
 ≥ 1, or equivalently, than a

11
 > 1.

For this to be the case a
12

 has to be such that a
12 

[σ
yx
(0)/σ

y
(0)] < 0. On the other

hand, if a
12 

[σ
yx

(0)/σ
y
(0)] > 0, then a

11
 = λ

1
 < 1, and the system is cointegrated,

which implies that ΣΣΣΣΣ(0) is singular and both VAR and the DLR models become
operational. However, cases where a

11
 > 1 are not very often encountered in practice,

which means that evidence of causality usually indicates that there is cointegration.

The preceding analysis suggests that a test of the null hypothesis of no-
cointegration can take the form H

0
 : a

1
 = 1 against the one-sided cointegration

alternative H
1
 : a

1
 < 1. The t-test, however, does not follow standard asymptotics

under the null. Critical values can be obtained by Monte-Carlo methods as in the
univariate case (see Dickey and Fuller (1981)). However, such and undertaking is
beyond the scope of the present paper � we use instead the DF critical values for the
univariate case as a guide for the corresponding ones in the multivariate case.
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Finally, some discussions on the restrictiveness of the above analytical framework
is required. First, the Wiener-Markov framework is mainly motivated by the
empirical literature on unit roots and cointegration where one unit root and
normality are widely used. Even in the cases where normality in the errors is not
explicitly assumed, the linear conditional mean and the homoscedastic conditional
variance brings the whole framework very close to normality. This is due to the
characterisation result provided by Nimmo-Smith (1979) and Spanos (1995a),
according to which if both conditional means E(y

t
/x

t 
) and E(x

t
/y

t 
) are linear in y

t
and x

t
 respectively, and only one conditional variance Var(y

t
/x

t 
) is homoscedastic,

then the joint distribution f(y
t
, x

t 
) is normal.

Another restrictive feature of the above framework is its �bivariate� structure.
This has been employed only for simplicity, and the results are also valid in a more
general multivariate framework. To see this more clearly, one can assume that the
vector Z

t
 in the stochastic process { }Tt,Zt ∈  is equal to Z

t
 = (y

t
, X

t 
) where

)X,...,X,X(X ktt2t1t = . Then ΣΣΣΣΣ(0) and ΣΣΣΣΣ(1) in (20) become:









=∑ )0()0(

)0()0(
)0(

xxy

yxy

σσ
σσ

     







=∑ )1()1(

)1()1(
)1(

xxy

yxy

σσ
σσ

(32)

where σ
yx 

(τ) and ΣΣΣΣΣx
(τ),  τ = 0,1 are a (1xk) vector and (kxk) matrix respectively.

IV. TWO EMPIRICAL EXAMPLES
This section reconsiders the vexed question of persistence of GDP (see, e.g.,

Nelson and Plosser (1982) and Campbell and Mankiw (1987a, 1987b) in the light of
theoretical results derived above. Let us assume that y

t
 denotes US GDP. A

parametric measure of persistence can be derived by estimating a in (2) to obtain:7

y
t
 = 0.150 + 0.980y

t�1
(33)

(0.154)  (0.023)

LM(1)=0.35 LM(4)=0.27
Q(8)=0.09 BJ=0.43

Where LM(i) is a Lagrange multiplier residual autocorrelation F-test of order i,
Q(8) is a Ljung-Box portmanteau test of order eight, and BJ is a Bera-Jarque normality
test (p-values are reported). The estimated model seems reasonably well specified
statistically, since there is no evidence for higher order linear dynamics. On the
basis of this model (i.e. random walk with a drift), one would infer that the persistence
of output is constant.

7 All data used in this section are quarterly and were obtained from the OECD Main Economic Indicators. For both the
US and Japan, income is measured as GDP, and is deflated by the GDP deflator, the monetary variable is M1 (also
deflated by the GDP deflator), and the interest rate is the three-month Treasury bill rate. The sample period is
1979Q1-1993Q4.
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Next, let us investigate the possibility that money and/or interest rates are
correlated with output (see, e.g., Sims (1972)). In order to do this, we first estimate
a DLR regression with money and lagged money as regressors:

y
t
= 1.798 + 0.587 y

t-1
 + 0.272 m

t
 � 0.125 m

t-1
(34)

  (0.698)  (0.163)         (0.166)         (0.182)

LM(1)=0.08 LM(4)=0.29
Q(8)=0.11 BJ=0.76

The first thing to notice is that the coefficient of y
t�1

, i.e. a
1
, is now much lower,

pointing towards a stable system with an exponentially decaying memory. This
result implies that a

12
 (and perhaps a

21
) is different from zero, i.e. that there exists

Granger causality in at least one direction. The fact that a
1
 is much less than one

implies that Granger causality in the form will result in cointegration between y
t

and x
t
. Standard Johansen tests, however, fail to reject the null of no-cointegration

(TS=7.56, λ�max =7.20). This conflicting evidence can be explained in terms of
the low power of Johansen test, or interpreted as an indication that the estimated
coefficient â

1
 = 0.587 is in fact not significantly different from one. An alternative

test for the null of no cointegration against the cointegration alternative can take
the form H

0
 : a

1
 = 1 against H

1
 : a

1
 < 1. A t-test for this hypothesis takes the value

of 2.53, which is less than the corresponding DF critical value, suggesting that the
null should not be rejected.

In view of the above conflicting evidence, we proceed to include the interest
rate in the conditioning information set, thus estimating the following DLR:

y
t
 = 1.894 + 0.564y

t�1
 + 0.298m

t
 � 0.132m

t�1
 + 0.029i

t
 �0.057i

t�1
(35)

(0.565)   (0.123)       (0.119)       (0.131)         (0.013)   (0.012)

LM(1)=0.07 LM(4)=0.24
Q(8)=0.46 BJ=0.56

Once again the coefficient of lagged output seems to be much lower than one,
providing evidence that we are dealing with a stable system. This time, however, y

t
,

m
t
 and i

t
 appear to be cointegrated (TS=32.89, λ�max =22.38). Moreover, the t-test

for the hypothesis a
1
 = 1 takes the value 3.544, which is greater than the corres-

ponding DF critical value.

This example clearly demonstrates how inference about the persistence of output
depends on the dynamic model chosen. Had the analysis been based on (33), one
would have concluded that output follows a random walk with drift, and therefore
that it is highly persistent. If, on the other hand, one estimates (35) persistence
appears to be decaying at an exponential rate.

Another example will be useful to demonstrate the result that persistence is
invariant to model selection if there is no Granger causality among the variables
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included in the alternative models. Let us consider the persistence of Japanese GDP.
As before, by estimating (2) we obtain:

y
t
= 0.634 + 0.951 y

t-1
(36)

  (0.147)   (0.013)

LM(1)=0.11 LM(4)=0.31
Q(8)=0.12 BJ=0.46

Which once more gives support to the random walk model with drift. If we
consider the issue of persistence in the context of a DLR model where money is
present we get:

y
t
 = �0.314 + 0.999y

t�1
 � 0.119m

t
 + 0.124m

t�1
(37)

(0.416)    (0.074)      (0.119)       (0.102)

LM(1)=011 LM(4)=0.93
Q(8)=0.47 BJ=0.15

It is noteworthy that the coefficient of y
t�1

 is not statistically different from one,
with the rest of the coefficients being characterised by relatively large standard
errors. At first sight this seems to be the case where there is no cointegration between
y

t
 and m

t
, and also no Granger causality seems to be present. This is necessary and

sufficient for the unit root found in the AR representation to carry forward to the
DLR representation of y

t
. It is also interesting that the estimate of b

2
 = �0.119 is

very close to �b
1
 = �0.124, which is additional evidence consistent with Granger

non-causality restrictions (see equation (26g)). One can conclude that model (37) is
operational in the sense that the coefficient in (37) will be time independent, and
(37) can be expressed and properly estimated in first differences. Therefore,
persistence in Japanese output seems to be invariant to models (33) and (37).

V. CONCLUSIONS
This study has revisited an issue which has attracted a lot of attention in recent

years (see, e.g. Cochrane (1988), and Campbell and Mankiw (1987a, 1987b)), i.e.
persistence in macroeconomic time series. The main argument of the present paper
is that persistence is not an invariant feature of a time series, but depends on the
context in which the series is used. As the parameters of a dynamic model are
defined relative to a particular information set, any change in the set of conditioning
variables might affect the resulting estimates (see Spanos (1995b)). If one selects an
alternative statistical parameterisation of the probabilistic structure of the variable
of interest, inference about a statistical property such as persistence generally turns
out not to be model invariant.

Having defined persistence as the memory of a series, we have shown that both
Granger-causality restrictions and the stability properties of the system affect
measured persistence. More specifically, in the case of stable systems both univariate
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AR models and Dynamic Linear Regression (DLR) models (which simply a
reparameterisation of VAR specifications) exhibit an exponentially decaying
autocorrelation function, but the exponential rate is the same if and only if there is
no Granger causality in either direction between the variables of the system.
Conversely, in the case of unstable systems, the autocorrelation function decays to
zero at a linear-like rate in the context of the univariate model, but it is exponentially
decaying within a DLR model with cointegrating restrictions.

These conclusions are important for econometric practice, and suggest that
economic theory should be used carefully to guide the choice of the conditioning
set, or else asking the question �how persistent is GDP?� (or some other economic
variable) might not be very informative about the underlying Data Generation
Process (DGP) and the sources of economic fluctuations. Unless more restrictions
derived from economic theory are imposed, issues such as the effectiveness of
stabilisation policies cannot be settled empirically, and the debate between Keynesian
and RBC theorists will remain inconclusive.
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