
 601Avances en Psicología Latinoamericana / Bogotá (Colombia) / Vol. 36(3) / pp. 601-617 / 2018 / ISSNe2145-4515 

Confirmatory Factor Analysis of Ordinal Variables:  
A Simulation Study Comparing the Main Estimation Methods

Análisis factorial confirmatorio de variables ordinales: un estudio de simulación  
que compara los principales métodos de estimación

Análise fatorial confirmatória de variáveis ordinais: um estudo de simulação  
que compara os principais métodos de estimação

Francisco Pablo Holgado-Tello*

María Ángeles Morata-Ramírez*

María Isabel Barbero García*

Universidad Nacional de Educación a Distancia —uned—

Doi: http://dx.doi.org/10.12804/revistas.urosario.edu.co/apl/a.4932

Abstract

In order to obtain evidences about construct validity 
through Confirmatory Factor Analysis, it has been usual 
treating Likert-type scales as if they were continuous 
variables measured on an interval scale. Therefore, 
Maximum Likelihood estimation method has been 
broadly applied, but in turn it implies problems con-
cerning both Pearson correlations and skewness in the 
distribution of responses to items. In this simulation 
study we analyse —through χ2, Type I error, and power— 
correctly specified and misspecified models comparing 
five estimation methods (Maximum Likelihood —ml—, 
Robust Maximum Likelihood —rml—, Weighted Least 
Squares —wls—, Unweighted Least Squares —uls— 
and Robust Unweighted Least Squares —ruls—) in 

relation to the models features: number of factors, 
number of response categories, items’ skewness, and 
sample size. We advise using ruls estimation method, 
in which polychoric correlations are implied.
Keywords: Confirmatory Factor Analysis, Likert-type 
scales, estimation methods, Type I error, power.

Resumen

Para obtener evidencias sobre la validez de constructo 
a través de Análisis Factorial Confirmatorio, ha sido 
habitual tratar las escalas tipo Likert como si fueran va-
riables continuas medidas según una escala de intervalo. 
Por tanto, el método de estimación de Máxima Vero-
similitud ha sido ampliamente aplicado, pero a su vez 
esto implica problemas en torno a las correlaciones de 
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Pearson y la asimetría de la distribución de respuestas a 
los ítems. En este estudio de simulación analizamos —a 
través de χ2, del error tipo I y de la potencia— modelos 
bien y mal especificados comparando cinco métodos de 
estimación (Máxima Verosimilitud —ml—, Máxima 
Verosimilitud Robusta —rml—, Mínimos Cuadrados 
Ponderados —mls—, Mínimos Cuadrados no Pondera-
dos —uls— y Mínimos Cuadrados no Ponderados Ro-
bustos —ruls—) en relación con las características de 
los modelos: número de factores, número de categorías 
de respuesta, asimetría de los ítems y tamaño muestral. 
Aconsejamos usar el método ruls de estimación, en 
el cual están implicadas las correlaciones policóricas.
Palabras clave: análisis Factorial Confirmatorio, es-
calas tipo Likert, métodos de estimación, error tipo I,  
potencia.

Resumo

Para obter evidências sobre a validez de constructo atra-
vés da análise fatorial confirmatória tem disso habitual 
tratar as escalas tipo Likert como se fossem variáveis 
contínuas medidas segundo uma escala de intervalo. 
Portanto, o método de estimação de máxima verossi-
militude tem sido amplamente aplicado, mas ao mesmo 
tempo isto implica problemas em torno às correlações 
de Pearson e a assimetria da distribuição de respostas 
aos itens. Neste estudo de simulação analisamos –atra-
vés de χ2, do erro tipo I e da potência— modelos bem 
e mau especificados comparando cinco métodos de 
estimação (máxima verossimilitude —ml—, máxima 
verossimilitude robusta —rml—, mínimos quadrados 
ponderados —mls—, mínimos quadrados não ponde-
rados —uls— e mínimos quadrados não ponderados 
robustos —ruls—) em relação com as características 
dos modelos: número de fatores, número de categorias 
de resposta, assimetria dos itens e tamanho amostral. 
Aconselhamos usar o método ruls de estimação, no 
qual estão implicadas as correlações policóricas.
Palavras-chave: análise fatorial confirmatória, escalas 
tipo Likert, métodos de estimação, erro tipo I, potência.

Introduction

Over time, the tripartite conception of validity 
(content validity, criterial validity and construct 
validity) has evolved into the current unified con-
ception in which construct validity represents a 
fundamental aspect (Messick, 1994; Smith, 2005).

The construct validation process includes a set 
of actions, among which the study of the internal 
test structure is often highlighted. In this sense, 
it is usually devoted much effort to obtain em-
pirical data in order to know the kind of relation 
set between the hypothesized variables and the 
scores through measurement instruments (Shadish, 
Cook & Campbell, 2002). Factor analysis plays a 
central role, since it is the most applied method to 
obtain evidences about construct validity because 
it provides information about the internal structure 
of the measurement instrument (Zumbo, 2007).

When using Confirmatory Factor Analysis  
—cfa—, certain requirements must be met: ad-
equate sample size, random sample collection, 
independent observations, multivariate normality 
of observed variables, absence of collinearity, lin-
earity, additivity of effects and the fact that both 
latent and that observed variables are continuous 
(Mulaik, 1972). However, most of these assump-
tions contradict the nature of the data which are 
usually obtained in Social Sciences through Likert-
type questionnaires, where the latent construct is 
continuous in nature while the observed variables 
are measured according to an ordinal scale (Co-
enders & Saris, 1995; DiStefano, 2002; Finney, 
DiStefano & Kopp, 2016; Flora & Curran, 2004; 
Freiberg, Stover, De la Iglesia & Fernandez, 2013). 
Consequently, one of the requirements for using 
cfa is not fulfilled, that is, the continuous nature 
of both latent and observed variables.

Despite this lack of fulfilment, treating observed 
variables as if they were continuous has been usu-
al. In this sense, most of studies apply Maximum 
Likelihood —ml— method in the cfa phase of 
parameter estimation (Brown, 2006). Apart from 
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homocedasticity and residual independence, the 
ml assumes both normal distribution and contin-
uous nature of observed variables (Bollen, 1989). 
It is an estimation method based on a Pearson cor-
relation matrix, since it is assumed that observed 
variables correspond to an interval scale (Coenders 
& Saris, 1995).

O’Brien (1985) has analysed the problems relat-
ed to the use of Pearson correlations in Likert-type 
scales. Among them, we can remark the variability 
reduction of the observed variables, whereby it is 
registered a lower correlation between them (Saris, 
Van Wijk & Scherpenzeel, 1998; DiStefano, 2002; 
Holgado-Tello, Chacón-Moscoso, Barbero-García 
& Vila-Abad, 2010). This fact, in turn, reduces the 
relationship between latent constructs and observed 
variables. Jöreskog and Sörbom (1996a, 1996b) 
propose using polychoric correlations to know the 
degree of correlation between ordinal variables. 
Polychoric correlations are an alternative which 
helps to overcome the problems associated with 
Pearson correlations (Coenders & Saris, 1995; 
Holgado-Tello et al., 2010; Choi, Peters & Muel-
ler, 2010).

The multivariate normal distribution of ob-
served variables is another aspect which also fails, 
in this case occasionally, in the fulfilment of cfa 
requirements (Flora & Curran, 2004). It seems 
that items’ skewness is one of the main causes 
(Coenders & Saris, 1995). While using the ml 
method requires that the observed variables follow 
the normal distribution, some researchers, such as 
Boomsma and Hoogland (2001), and Muthén and 
Muthén (2002), state that this method is robust to 
the failure to meet this assumption. For its part, 
Kaplan (1990) considers that ml can be used when 
the univariate skewness is lower than 1 in all the 
variables which are part of the analysis.

It is worth recalling that model building in cfa 
consists of different stages. First of all, the model 
is specified and identified. After collecting data, 
model parameters are estimated. Then the mod-
el fit is evaluated. One of the cfa fundamental 

 aspects focuses on the model estimation phase. 
In few words, in this stage the generic expression  
F = [ S - Σ (p) ]’ W [ S - Σ (p) ] is minimized (Bol-
len, 1989). On the one hand, in this adjustment 
function, [S - Σ (p)] the residual matrix is obtained 
after calculating the difference between two vari-
ance-covariance matrices: S from the sample and 
Σ (p) from the model parameters. On the other 
hand, W is the weighing matrix.

According to Jöreskog and Sörbom (1988), 
from an asymptotic covariance —ac— matrix a 
freely distributed weighing matrix W is obtained, 
which is involved in the adjustment function of 
the Robust Maximum Likelihood method or rml 
(Bentler, 2006; Jöreskog & Sörbom, 1996b), the 
Weighted Least Squares method or wls, and the 
Robust Unweighted Least Squares method or ruls 
(Yang-Wallentin, Jöreskog & Luo, 2010). These 
estimation methods are an alternative to the ml 
method. More specifically, when continuous ob-
served data do not follow the normal distribution 
it is advisable to use an asymptotically distribu-
tion-free method: wls (Brown, 2006; Yang-Wal-
lentin et al., 2010). If any of the observed variables 
is categorically measured, the wls method allows 
the use of polychoric correlations (Jöreskog & 
Sörbom, 1989). It is worthy to mention —and it 
is the main limitation of this method— that the 
model must not have neither over 10 variables 
nor a moderate sample size, that is, less than 1000 
cases (Satorra, 1990). For small or medium-sized 
samples the rml method has shown a better per-
formance than wls (Curran, West, & Finch, 1996; 
Hu & Bentler, 1992). The rml method, as in the 
case of the wls, can be applied when observed 
variables are continuous in nature and data do 
not follow the normal distribution, although rml 
provides the Satorra-Bentler χ2 statistic (Brown, 
2006; Finney & DiStefano, 2006). As regards the 
uls method, it does not establish a certain distri-
bution of categorical observed variables (Bollen, 
1989; Brown, 2006; MacCallum, 2009). Finally, 
the ruls method, analysed by Yang-Wallentin et al. 
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(2010), is a robust variant of uls because both of 
them work with a polychoric correlations matrix, 
but, when using ruls, this kind of correlation is 
the basis for obtaining the ac matrix thereafter, 
which is involved in a freely distributed weighing 
W matrix, since observed variables do not fulfil 
the multivariate normal distribution assumption.

It is important to note that, as far as we know, 
both the rml and the ruls methods have been 
used by a minority of recent studies. Although 
these estimation methods begin to be used more 
frequently in applied research, simulation studies 
focused on Type I error and power of parame-
ter estimation methods are still scarce. To men-
tion a few, we should highlight the studies done 
by Lei (2009), Holgado-Tello, Morata-Ramírez 
and Barbero-García (2016), Sass, Schmitt and 
Marsh (2014), Savalei and Rhemtulla (2013), and 
Yang-Wallentin et al. (2010).

Briefly, in studies about statistical power, Bol-
len (1989) identifies two basic principles: (1) the 
positive relationship between Type I error and the 
statistical power of a test, and (2) the power de-
pendence upon the specific value of a parameter 
under the alternative hypothesis. At the same time, 
although the statistical power increases as a sam-
ple size does, there are other features involved in 
power level (Saris & Satorra, 1988). Through the 
χ2 likelihood ratio test parameters can be detected 
that must be added to the theoretical model. Thus, 
the power of the test corresponds to the probabil-
ity of detecting specification errors, for either a 
lack of a sufficient number of parameters or the  
setting of incorrect constraints in the model.

One of χ2 statistic limitations related with the 
present study has to be pointed out: its sample size 
sensitivity, which results in a slight trend to the 
rejection of probably correct theoretical models 
with a big sample size (Hu & Bentler, 1995). De-
spite this, the alternative goodness of fit indices 
does not allow to set a clear relationship between 
the fit index and the model specification errors 
(Saris & Satorra, 1993).

The rejection of the null hypothesis associated 
to low power has often been interpreted as an evi-
dence of serious misspecification. Additionally, if 
the likelihood ratio test determines a good fit and 
simultaneously the power is high, it is considered 
that there are no serious specification errors. At 
this point, it has to be taken into account that Saris 
and Stronkhorst (1984) warn about the insignifi-
cant specification errors related to the rejection of 
null hypothesis when the power is high, whereas 
maintaining the null hypothesis when the power 
is low might hide undetected serious specification 
errors, which seriously affect the evidences for 
obtaining construct validation.

Finally, it must be noted that the ac matrix is 
not only involved in certain parameter estimation 
methods to apply when the observed variables are 
measured according to an ordinal scale. As we will 
see, this matrix is also present when analysing 
goodness of fit using the χ2 likelihood ratio test. 
According to Jöreskog (2004), the ac matrix is 
necessary to obtain the χ2 statistic if the observed 
variables do not fulfil the multivariate normality 
assumption, and consequently different χ2 values 
are obtained: C1 (“Minimum Fit Function Chi-
Square”), C2 (“Normal Theory Weighted Least 
Squares Chi-Square”), C3 (“Satorra-Bentler Scaled 
Chi-Square”) and C4 (“Chi-Square Corrected for 
Non-Normality”).

In connection therewith, χ2 values depend on 
the parameter estimation method previously used. 
When the multivariate normality assumption is 
fulfilled, C1 and C2 indices are obtained for ml 
method and C1 index for uls method, whereas, 
when that assumption is not fulfilled, ac matrix 
allows to obtain C1, C2, C3 and C4 indices for 
the rml method and C1 index for the wls method 
(Jöreskog, 2004). Following this pattern, C2, C3 
y C4 indices are obtained for the ruls method.

To sum up, an important point to remember 
when using factor analysis to check construct 
validity is the measurement scale of the instru-
ment (Flora, Finkel & Foshee, 2003). In addition, 
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Shadish et al. (2002) as well as Flora and Curran 
(2004) consider that the conclusions derived from 
empirical data about a theoretical model can be 
affected by the mismatch between what the sta-
tistical model assumes and the characteristics of 
the analysed data. Since it is necessary that the 
theoretical models reproduce the relationships 
between the variables of a construct as faithfully 
as possible, there should be consistency between 
the estimation methods and the measurement in-
strument. Given the existing estimation methods 
and data characteristics, the objective of the pres-
ent simulation study is to analyse the influence of 
a set of experimental factors (number of factors, 
number of response categories, items’ skewness, 
and sample size) on Type I error and power related 
to different estimation methods. Specifically, five 
estimation methods are compared: ml, rml, wls, 
uls, and ruls.

Method

Four experimental factors were manipulated:  
a) number of factors, or latent variables, b) number 
of response categories, c) items’ skewness, and  
d) sample size. The number of factors had five 
levels (2, 3, 4, 5 and 6). For each factor three items 
were simulated. The factor loadings of the items 
were always the same in all factors, namely 0.9, 
0.8 and 0.7 for the first, second and third item of 
each factor. The simulated factor loadings were 
high in order to avoid doubts about the specifi-
cation in the parameters estimation stage. Items 
were generated according to a normal distribution 
N(0,1). Then, these answers were categorized ac-
cording to 3, 4, 5, and 6 points Likert-type scales. 
These scales were categorized so that: a) the re-
sponses to all items remained symmetrical, b) all 
items had moderate skewness, or c) all items had 
severe skewness. Thus, items’ skewness had three 
experimental levels: skewness = 0; skewness = 1, 
or moderate; skewness = 2, or severe.

To categorize Likert-type scales, as stated by 
Bollen and Barb (1981), the continuum was divided 
into equal intervals from z = -3 to z = 3 in order to 
calculate the thresholds of the condition in which 
the response distribution to all items is symmetri-
cal (skewness = 0). For skewed distributions, the 
thresholds were calculated, according to Muthén 
and Kaplan (1985), in a way that observations 
were accumulated in one of the extreme categories 
as the degree of skewness increased. Half of the 
variables of each factor were categorized with the 
same positive skewness and the rest of variables 
with the same negative skewness with the purpose 
of simulating difficulty factors. Finally, sample 
size had six experimental values (100, 150, 250, 
450, 650 and 850 cases).

The combination of the four experimental 
factors (number of factors, number of response 
categories, items’ skewness and sample size) pro-
duced 360 experimental conditions (5 x 4 x 3 x 6) 
which were replicated 500 times. These replications 
were performed using R version 2.12.0, which 
invoked successively Prelis version 2.0 to gener-
ate the corresponding data matrices according to 
the specifications resulting from the combination 
of the experimental conditions. Thus, for each 
generated matrix, we obtained Pearson and poly-
choric correlations matrices as well as asymptotic 
covariance matrices.

After obtaining correlations matrices and as-
ymptotic covariance matrices for each data matrix 
generated under the concrete specifications of 
the experimental factors, we conducted the cor-
responding Confirmatory Factor Analysis (cfa) 
successively, that is, until 500 times (one cfa for 
each replication). As in the previous case, these 
replications were performed using R version 2.12.0, 
which invoked successively lisrel version 8.8. 
There were two types of theoretical models which 
were tested through lisrel: (1) correctly specified 
models: this means that the specified theoretical 
model using lisrel syntax corresponds exactly 
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with the model which has enabled data genera-
tion, and (2) misspecified models: in this case the 
theoretical model specified using lisrel syntax 
does not correspond exactly with the model that 
has enabled data generation. To do this, the syntax 
specifies a model so that an item of each factor 
saturates incorrectly in another one.

The combination of these criteria produced 
360 000 replications (180 000 for correctly speci-
fied models and the same amount for misspecified 
models) for each estimation method. Taking into 
account the five estimation methods, a total of 
1 800 000 (5*360 000) replications were generated.

In order to facilitate the management and com-
pilation of fit indices files, a specific program was 
generated in Java language.

Data Analysis

Type I error was the percentage of rejections 
of the null hypothesis in correctly specified mod-
els. Power (1-β) was the rejection percentage of 
the null hypothesis in misspecified models. We 
made these calculations for each of the χ2 values 
reported in the lisrel output files obtained for each 
estimation method used in the present study. The 
χ2 values obtained for each estimation method, 
depending on the fulfilment of the multivariable 
normality assumption, were the following ones: 
C1 and C2 for the ml method; C1, C2, C3 and C4 
for rml; C1 for wls; C2 for uls; and finally C2, 
C3 and C4 for ruls. We used a probability of 0.05 
as significance level.

Results

In the lines below, it must be taken into con-
sideration that there were some experimental con-
ditions for which it was not possible to obtain 
results, due to the fact that, as we mentioned in the 
introduction, the use of the wls method requires 
the fulfilment of certain conditions. In this regard, 
when the responses to all items had a symmetrical 

distribution, there were no available results, re-
gardless of the number of categories, for models 
with 5 factors and 100 cases and for models with 6 
factors and 100 or 150 cases. When the responses 
had a moderate skewed distribution, there were 
no available results, irrespective of the number of 
categories, for models with 5 or 6 factors and 100 
cases and for models with 6 factors and 100 or 150 
cases. There were also no results for models with 
5 factors, 3 response categories and 150 cases, as 
well as both for models with 6 factors, 3 response 
categories and any of the remaining sample sizes 
analysed and for models with 6 factors, 5 response 
categories and 850 cases. When the responses had 
a severe skewed distribution, there were no results, 
independently of the number of categories, for 
models with 5 factors and 100 cases and for models 
with 6 factors and 100 or 150 cases. For this reason, 
the findings about wls must be cautiously consid-
ered when this method is compared with the others.

Influence of the Number of Factors

Table 1 displays the results about Type I error 
and power of each of the estimation methods de-
pending on the number of factors of the theoretical 
models examined.

With regard to the ml, Type I error values are 
quite alike, regardless of the number of factors of 
the model. In fact, Type I error is mostly above 0.22 
although it presents the lowest value for models 
with three factors (0.207). For its part, power is 
slightly greater as the number of factors increases. 
Thus, the power is .818 in models with two factors, 
whereas it is 0.986 in models with six factors. In 
other words, as the number of factors increases, 
the probability of accepting a false model is lower.

In the rml method Type I error decreases as the 
number of factors of the model increases. In fact, 
when the model has two factors, Type I error is 
0.088, and when the model has five or six factors, 
this value is 0.001. Power presents an increasing 
pattern as the number of factors goes from two to 
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three (0.605 and 0.761, respectively). Then, its 
values are similar to some degree but they increase 
when the factors of the model rise from five to six 
(0.706 and 0.993, respectively). Consequently, the 
probability of accepting a false model decreases 
as a model takes more factors into account.

As regards the wls, Type I error is higher as 
the models have more factors. This value is 0.155 
in models with two factors and raises to 0.725 in 
models with six factors. Apart from that, power 
improves as the dimensions of the evaluated models 
increase and it shows the maximum value from 
four factors on.

The uls method follows the same pattern as 
the wls, that is to say, as the number of factors 
increase, Type I error and power also increase. In 
this case, power reaches the maximum value for 
models with three or more factors.

For the ruls we find a similar trend to the one 
shown by the rml method. Thus, as the number 
of factors increases, Type I error improves, since 
in models with two factors Type I error is 0.120, 
and in models with six factors it is 0.053 (around 
the nominal value of the significance level of 95 %, 
which is taken as a reference). For their part, power 

Table 1 
Influence of Number of Factors on Type I Error and Power

Number of 
Factors

χ2
Type I Error Power

ml rml wls uls ruls ml rml wls uls ruls

2

C1 0.244 0.244 0.155 - - 0.810 0.810 0.812 - -

C2 0.244 0.245 - 0.589 0.560 0.818 0.818 - 0.979 0.980

C3 - 0.088 - - 0.120 - 0.605 - - 0.837

C4 - 0.100 - - 0.142 - 0.557 - - 0.826

3

C1 0.212 0.213 0.201 - 0.957 0.957 0.985 - -

C2 0.207 0.207 - 0.780 0.760 0.961 0.961 - 1 1

C3 - 0.008 - - 0.056 - 0.761 - - 0.980

C4 - 0.036 - - 0.154 - 0.738 - - 0.987

4

C1 0.227 0.229 0.420 - - 0.971 0.971 1 - -

C2 0.216 0.218 - 0.864 0.852 0.968 0.968 - 1 1

C3 - 0.003 - - 0.059 - 0.726 - - 0.988

C4 - 0.119 - - 0.368 - 0.874 - - 1

5

C1 0.252 0.251 0.558 - - 0.986 0.986 1 - -

C2 0.230 0.229 - 0.909 0.898 0.982 0.981 - 1 1

C3 - 0.001 - - 0.071 - 0.706 - - 0.993

C4 - 0.327 - - 0.580 - 0.968 - - 1

6

C1 0.285 0.127 0.725 - - 0.999 1 1 - -

C2 0.244 0.098 - 0.939 0.815 0.986 1 - 1 1

C3 - 0.001 - - 0.053 - 0.993 - - 1

C4 - 0.455 - - 0.750 - 1 - - 1
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values approach progressively to 1 as the number 
of factors approximates to six.

Comparing the results, robust estimation meth-
ods show the lowest Type I error and the highest 
power. Both methods show higher Type I error 
percentages for two factors models, but the values 
are lower for the rml method, regardless of the 
number of factors. As regards power, these methods 
display an improvement as long as the dimensions 
of the models increase, although power is higher 
with the ruls method rather than with rml, par-
ticularly for models with few factors.

Concerning non-robust methods, Type I error 
of ml is quite similar, independently of the num-
ber of factors, whereas power improves slightly 
as the number of factors increases. In addition, 
when using the wls method, as the number of 
factors increases, Type I error worsen but power 

improves. The uls method displays a similar trend, 
and it is worthy to remark that it shows the highest 
percentages of Type I error and power with respect 
to the remaining estimation methods analysed.

Influence of the Number of Categories

In table 2 we present the results related to the 
number of categories.

With respect to the ml method, Type I error 
values are pretty similar, regardless of the number 
of categories. In this context, models with three 
response categories show the lowest Type I error 
(0.200), whereas models with four response catego-
ries display the highest one (0.267). Power values 
are close to each other, irrespective of the number 
of categories, but they are greater for models with 
four categories (0.956).

Table 2 
Influence of Number of Categories on Type I Error and Power

Number of 
Categories

χ2
Type I Error Power

ml rml wls uls ruls ml rml wls uls ruls

3

C1 0.218 0.190 0.334 - - 0.925 0.912 0.933 - -

C2 0.200 0.178 - 0.926 0.904 0.926 0.914 - 0.997 0.997

C3 - 0.001 - - 0.068 - 0.600 - - 0.939

C4 - 0.103 - - 0.324 - 0.688 - - 0.941

4

C1 0.283 0.269 0.452 - - 0.956 0.952 0.970 - -

C2 0.267 0.258 - 0.862 0.826 0.956 0.952 - 0.996 0.996

C3 - 0.069 - - 0.120 - 0.743 - - 0.960

C4 - 0.203 - - 0.387 - 0.833 - - 0.969

5

C1 0.231 0.217 0.357 - - 0.945 0.937 0.953 - -

C2 0.216 0.207 - 0.765 0.716 0.945 0.938 - - 0.995

C3 - 0.009 - - 0.058 - 0.747 - 0.995 0.958

C4 - 0.166 - - 0.327 - 0.821 - - 0.959

6

C1 0.245 0.231 0.372 - - 0.947 0.941 0.957 - -

C2 0.231 0.222 - 0.705 0.643 0.949 0.943 - 0.995 0.994

C3 - 0.014 - - 0.054 - 0.786 - - 0.954

C4 0.194 - - 0.324 - 0.852 - - 0.955
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As regards the rml, Type I error tends to be 
similar over the number of response categories, 
albeit for models with four categories it is mark-
edly higher (0.069) than the rest. Power is mostly 
rather alike as the number of categories increases, 
although models with three categories display a 
lower one (0.600).

The wls method, like both ml and rml, shows 
a quite similar Type I error, regardless of the num-
ber of categories, but models with four categories 
display a noticeable higher Type I error (0.452). 
Power is pretty alike all over the number of cat-
egories, but it shows a greater value for models 
with four categories (0.970).

With respect to the uls method, Type I error 
decreases as the number of categories increases. 
Thus, in models with three categories, the Type 
I error is 0.926, whereas in models with six cate-
gories it is 0.705. In other words, as models have 
a higher number of categories, the probability 
of rejecting a correctly specified model is lower. 
Power values almost reach the maximum value 
irrespective of the number of categories.

As regards the ruls, Type I error is rather sim-
ilar in relation to the number of categories, even 
though it is clearly greater when the model has 
four response categories (0.120). In case the eval-
uated model has five or six response categories, 
the Type I error values are respectively 0.058 and 
0.054, namely close to 0.05 (the nominal value 
of 95 % significance level). For its part, power is 
mostly pretty alike over the number of categories. 
In fact, models with three categories show their 
lowest value (0.939).

Comparing the estimation methods amongst 
each other, ml, rml, wls and ruls coincide with 
the fact that a Type I error is more likely to oc-
cur when models have four response categories. 
Besides, these methods show individually pretty 
similar power values, except for models with three 
or four categories, which are more or less notice-
ably higher than the rest of categories.

As we mentioned before in relation to the num-
ber of factors, Type I error values in robust meth-
ods are the lowest ones and power values are the 
highest ones. Albeit both robust methods show a 
higher Type I error for models with four response 
categories, it is also true that the rml shows lower 
values than the ruls, regardless of the number 
of categories. In addition, the ruls Type I error 
is close to the nominal value of the significance 
level of 95 % for reference purposes if the evalu-
ated model has five or six response categories. In 
relation to power, the ruls displays higher values 
than the rml as the number of categories is small 
as well as for the number of factors.

As far as the uls is concerned, when the number 
of categories grows, the Type I error decreases and 
its power reaches very near to the maximum value 
whatever the number of categories. It is worthy 
to note that both uls Type I error and power are 
once again the highest in comparison with the 
remaining estimation methods.

Influence of the Items’ Skewness

Table 3 shows the results related to items’ 
skewness.

As regards the ml, the Type I error increases as 
the skewness of the responses distribution does. 
Thus, when the distribution is symmetrical, the 
Type I error is 0.054 (around the nominal value 
of the significance level of 95 %), whereas when 
the distribution has a severe skewness, the Type I 
error is 0.476. In other words, as skewness grows, 
it is more probable to reject a correctly specified 
model. In addition, power decreases as the respons-
es distribution is more skewed. Namely, power 
is 0.978 in models with a symmetrical responses 
distribution, and it descends until 0.897 for models 
whose distribution has a severe skewness. There-
fore, as the degree of asymmetry increases, it is 
more likely to accept a false model.

For its part, the rml shows that the Type I 
error grows as the response distribution changes 
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from symmetrical to moderate skewed. However, 
Type I error values are alike in case the skewness 
is moderate or severe. In fact, when the respons-
es distribution is symmetrical, the Type I error is 
0.006, whereas, when the distribution has a mod-
erate or a severe skewness, this value is 0.034 and 
0.033, respectively. For its part, power decreases 
in a noticeable way. That is, for symmetrical dis-
tribution the power is 0.941, whereas it is 0.737 
and 0.436 in models whose response distributions 
have moderate and severe skewness, respectively.

When the wls is applied, the Type I error shows 
similar values when the responses distribution is 
symmetrical or has a moderate skewness, but it 
slightly increases if the distribution has a severe 
skewness. In fact, when the distribution is symmet-
rical, the Type I error is 0.371, when the response 
distribution has a moderate asymmetry, the Type 
I error is lower (0.358), and when with a severe 
skewness, the Type I error is 0.412; that is, higher 
than symmetrical distributions. For its part, power 
is slightly lower as the skewness of the responses 

distribution grows, going from 0.968 to 0.940 for 
models with a symmetrical and a severe skewed 
distribution, respectively.

For the uls, the Type I error increases as the 
degree of skewness of the responses distribution 
does. In fact, when the distribution is symmet-
rical, the Type I error is 0.573, whereas when it 
has a moderate or a severe skewness this value is 
0.900 and 0.975, respectively. In other words, as 
the degree of skewness grows, it is more likely to 
reject a correctly specified model. Power values 
are almost 1, regardless the degree of skewness.

Regarding the ruls with respect to the Type 
I error, it is higher as the response distribution 
goes from being symmetrical to have a moder-
ate skewness, whereas it displays similar values 
when the response distribution has a moderate or 
a severe skewness, like the rml. In fact, when the 
distribution is symmetrical, Type I error is 0.054 
(around the nominal value of the significance level 
of 95 %, which is taken as a reference), whereas, 
when the distribution has a moderate or a severe 

Table 3 
Influence of Skewness Degree on Type I Error and Power

Skewness 
Degree

χ2
Type I Error Power

ml rml wls uls ruls ml rml wls uls ruls

0

C1 0.075 0.071 0.371 - - 0.977 0.975 0.968 - -

C2 0.054 0.054 - 0.573 0.564 0.978 0.977 - 0.992 0.992

C3 - 0.006 - - 0.054 - 0.941 - - 0.977

C4 - 0.232 - - 0.393 - 0.945 - - 0.971

1

C1 0.183 0.179 0.358 - - 0.953 0.942 0.953 - -

C2 0.161 0.163 - 0.900 0.876 0.955 0.944 - 0.996 0.996

C3 - 0.034 - - 0.092 - 0.737 - - 0.954

C4 - 0.142 - - 0.334 - 0.819 - - 0.955

2

C1 0.480 0.461 0.412 - - 0.899 0.882 0.940 - -

C2 0.476 0.463 - 0.975 0.967 0.897 0.881 - 0.998 0.998

C3 - 0.033 - - 0.086 - 0.436 - - 0.919

C4 - 0.114 - - 0.262 - 0.603 - - 0.937

Note. 0 = Symmetrical items’ distribution; 1 = Moderate skewed items’ distribution; 2 = Severe skewed items’ distribution.
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skewness, this value is 0.092 and 0.086, respec-
tively. Apart from that, power decreases in accord 
with the increasing of skewness in the responses 
distribution. In fact, in models with a symmetrical 
distribution, power has a value of 0.977 and it falls 
to 0.919 when the skewness is severe. That is to 
say, as the degree of skewness grows, it is more 
likely to accept a false model.

Comparing the estimation methods analysed in 
the present study each other, rml and ruls show a 
similar pattern in the Type I error and power values 
as the responses distribution is more skewed. In this 
sense, the passage from a symmetrical distribution 
to a moderate skewed distribution represents an 
increase of Type I error, and then for moderate or 
severe skewed distributions Type I error values are 
very alike. In addition, power for both rml and 
ruls worsens as the degree of skewness grows, 
particularly for rml.

As regards non-robust estimation methods, 
the Type I error for wls displays pretty similar 
values in both symmetrical and moderate skewed 

distributions, but this value increases when the 
distribution has a severe skewness. For its part, 
the wls power follows a light downward tenden-
cy. In addition, Type I error and power for the ml 
method decrease as the skewness of the respons-
es distribution is greater. The uls method shows 
again the highest Type I error values among the 
estimation methods analysed, whereas power al-
most reaches the maximum value for any of the 
skewness degrees considered.

Influence of the Sample Size

In table 4 we show the results about Type I er-
ror and power for each of the estimation methods 
depending on sample size of theoretical models.

When the ml method is used, the Type I error 
increases as sample size grows. Thus, in models 
with 100 cases the Type I error is 0.068, whereas 
in models with 850 cases this value is 0.402. In 
other words, as the number of cases increases, it is 
more likely to reject a correctly specified model. 

Table 4 
Influence of Sample Size on Type I Error and Power

Sample Size χ2
Type I error Power

ml rml wls uls ruls ml rml wls uls ruls

100

C1 0.124 0.107 0.491 - - 0.790 0.747 0.802 - -

C2 0.068 0.068 - 0.817 0.705 0.782 0.743 - 0.982 0.977

C3 - 0.003 - - 0.061 - 0.311 - - 0.828

C4 - 0.391 - - 0.595 - 0.614 - - 0.861

150

C1 0.167 0.147 0.542 - - 0.902 0.891 0.898 - -

C2 0.134 0.120 - 0.820 0.759 0.909 0.898 - 0.993 0.992

C3 - 0.028 - - 0.095 - 0.505 - - 0.907

C4 - 0.322 - - 0.539 - 0.667 - - 0.911

250

C1 0.184 0.174 0.529 - - 0.970 0.965 0.965 - -

C2 0.169 0.162 - 0.821 0.790 0.972 0.967 - 0.999 0.999

C3 - 0.039 - - 0.095 - 0.674 - - 0.967

C4 - 0.168 - - 0.449 - 0.724 - - 0.959

Continúa
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On the contrary, power improves when the sam-
ple size is greater. In this sense, in models with 
850 cases it reaches the maximum value, though 
the power of models with 450 and 650 cases is 
already almost 1.

For the rml, Type I error values are quite alike 
in relation to the sample sizes considered in the 
present study. However, sample sizes of 100 and 
650 cases display the lowest Type I error, since its 
values are 0.003 and 0.008, respectively. Power 
increases as sample size does. That is to say, as 
sample size is smaller, the probability of accepting 
a false model is greater.

As regards the wls method, the Type I error 
shows similar values when the sample size is be-
tween 100 and 250 cases. Therefore, in models 
with 100 cases the Type I error is 0.491, whereas 
in models with 250 cases this value is 0.529. For 
its part, a noticeable downward trend in Type I 
error is observed when the sample size of models 
goes from 450 to 850 cases. In fact, in models 
with 450 cases the Type I error is 0.370, whereas 
in models with 850 cases this value is 0.185. On 
the contrary, power improves as sample size in-
creases, and in models with 850 cases the power 

is 1. However, the power of models with 450 and 
650 cases almost reaches the maximum value.

With respect to the uls, Type I error values 
are pretty similar regardless of the sample size 
of models. In fact, when models have 100 cases, 
the Type I error is 0.817, and this value is 0.811 
for models with 850 cases. For its part, the power 
improves as the sample size grows, and it shows 
the maximum value in models whose samples are 
equal to or over 450 cases, even though its values 
are almost 1 for models with 150 and 250 cases.

When using the ruls, the Type I error is close 
to 0.050 (around the nominal value of 95 % sig-
nificance level) when models have 100, 650 and 
850 cases, whereas for the remaining sample sizes 
(that is, 150, 250 and 450 cases) Type I error is 
around 0.090. Therefore, there is an upward trend 
in Type I error when sample sizes go from 100 to 
150 cases, and a downward trend when models 
have 650 and 850 cases. Power improves as the 
sample size increases. Thus, in models with sam-
ples sizes with 850 cases its value is maximum, 
although models with 450 and 650 cases display 
power values which are almost 1.

Sample Size χ2
Type I error Power

ml rml wls uls ruls ml rml wls uls ruls

450

C1 0.268 0.246 0.370 - - 0.994 0.993 0.991 - -

C2 0.270 0.248 - 0.817 0.788 0.995 0.994 - 1 1

C3 - 0.040 - - 0.090 - 0.865 - - 0.992

C4 - 0.080 - - 0.283 - 0.865 - - 0.990

650

C1 0.323 0.301 0.240 - - 0.999 0.998 0.997 - -

C2 0.330 0.308 - 0.806 0.776 0.999 0.999 - 1 1

C3 - 0.008 - - 0.055 - 0.952 - - 0.998

C4 - 0.027 - - 0.176 - 0.932 - - 0.997

850

C1 0.400 0.376 0.185 - - 1 0.999 1 - -

C2 0.402 0.378 - 0.811 0.774 1 0.999 - 1 1

C3 - 0.020 - - 0.051 - 0.966 - - 1

C4 - 0.033 - - 0.133 - 0.970 - - 0.999
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Comparing the estimation methods for each 
other, for the ml the Type I error increases as sam-
ple size is bigger, whereas it decreases for wls. 
Power is higher as the sample size is greater. For 
both methods, models with 850 cases show the 
maximum power, even though the power of sam-
ple sizes with 450 and 650 cases is already very 
close to 1. As far as uls is concerned, the Type 
I error and power values are again the highest in 
comparison to the rest of the estimation methods 
analysed. Besides, the uls method displays the 
maximum value for samples equal to or over 450 
cases, although the power of samples with 150 
and 250 cases is almost 1.

Regarding robust estimation methods, for both 
rml and ruls the Type I error is quite similar, irre-
spective of sample size. Specifically, its values for 
the rml are once again lower than for the ruls. In 
relation to power, the ruls shows higher values than 
rml as for the previous experimental conditions.

Discussion

Number of Factors

Taking into account the number of factors of 
the models analysed, while the uls method dis-
plays the highest rejection of misspecified models 
percentages according to power results, it is also 
true that its Type I error values imply the highest 
rejection of correctly specified models. With re-
spect to robust estimation methods, they show a 
lower Type I error than the ml and wls, although 
the Type I error with the ruls method is slightly 
higher than with the rml. Power results with the 
ruls are at higher levels than rml, and there are 
more noticeable differences between both methods 
when there are fewer factors.

Number of Categories

When we examine Type I error and power re-
sults related to the number of categories of the 

models, the uls is the estimation method where the 
highest power and the Type I error coincide. Con-
sequently, this method gives rise to the  rejection 
of a larger amount of correctly specified models 
than other methods. Leaving aside the uls, the 
robust methods display the lowest Type I error. 
Particularly, the rml shows a lower percentage of 
correctly specified models rejection in compari-
son to the ruls, but the ruls shows power values 
close to the maximum, irrespective of the number 
of categories. Besides, power differences between 
rml and ruls are more evident as there is a less 
number of categories.

Items’ Skewness

In terms of the skewness’ degree of the re-
sponses distribution, the uls method is the one that 
shows one more time the highest percentages of 
rejection of misspecified models, but at the same 
time it rejects the highest amount of correctly 
specified models, especially those with a moderate 
or severe skewed distribution. Regarding the rest 
of methods, both rml and ruls display again the 
lowest Type I error. It is lower for the rml, which 
remains at the same percentage for moderate and 
severe skewness levels. With reference to power, 
as skewness grows, the rml method displays a 
lower percentage of rejection of misspecified mod-
els than ruls does. Additionally, power for rml 
decreases noticeably as skewness grows. Thus, 
the ruls method appears to be the most beneficial.

Sample Size

Concerning sample size, power percentages 
obtained with the uls method are the highest ones 
in comparison to the rest of estimation methods, 
regardless of the number of cases of the models. 
However, the Type I error is also the highest one 
for the uls, so it rejects the most important amount 
of correctly specified models. In terms of the oth-
er estimation methods, rml and ruls display the 
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lowest Type I error, although rml percentages are 
even lower than those of ruls. Power obtained 
with the ruls is higher than with the rml for any 
sample size. Hence, using the ruls seems to be 
the best, particularly for models with 100, 650 and 
850 cases, whose Type I error is smaller and close 
to the nominal level (0.050).

Comparison between Methods  
and General Guidelines

The results indicate that the ruls estimation 
method is more advantageous than any of the re-
maining methods analysed. In this sense, compared 
to ml, rml, wls and uls, using the ruls method 
reduce the probability of rejecting correct specified 
models and increase the probability of rejecting 
misspecified models taking into account the number 
of factors, the number of categories, items’ skew-
ness, and sample size separately. This outcome is 
in line with Jöreskog and Sörbom (1989), who 
defend estimation methods which use polychoric 
correlations when dealing with Likert-type scales. 
In this regard, according to Jöreskog and Sör-
bom (1988), considering that ordinal variables are 
measured on an interval scale provides distorted 
parameters estimations and incorrect χ2 goodness 
of fit values.

Considering globally the results, the ruls, com-
paring to the others methods, seem to be a estima-
tion method that works adequately, independently 
of the factors manipulated.

Limitations of the Study and Suggestions  
for Future Research Lines

In this paper, we present obtained results which 
can only be applied for misspecified models whose 
features correspond to the same number of factors, 
number of categories, items’ skewness and sample 
size. It would be interesting in future research to 
expand the range of misspecified models, taking 
into consideration contributions such as Sharma, 

Mukherjee, Kumar and Dillon (2005) in the sense 
that they include in their study up to 12 types of 
models according to their degree of misspecifi-
cation.

When stablishing non-normality levels, not on-
ly skewness degree but kurtosis should have been 
taken into account, as Flora and Curran (2004) 
do. These authors point out that the wls method 
implies the calculation of fourth order moments, 
and consequently kurtosis is involved in the re-
sults obtained. Additionally, Bentler (2006) warns 
about the multivariate kurtosis (mk) influence on 
rml results, since a mk lower than 5 advises not 
to apply the rml method (Yang & Liang, 2013).

Concerning sample size, when using the wls 
method there were non-positive definite matrices 
due to an insufficient number of cases. Future 
studies should include experimental conditions 
with sample sizes greater than 850 cases.

Given the limitations of the χ2 likelihood ratio 
test, namely its sensitivity to sample size and its 
underlying assumption whereby a good fit of the 
model in the population means a perfect fit (in-
stead of, as it actually occurs, an approximate fit), 
it is advisable that conclusions from its results are 
complemented with other goodness of fit indices. 
Consequently, in future research it might be inter-
esting to study the information that provide other 
goodness of fit indices related to the characteristics 
of the theoretical models. In addition, aspects not 
considered in this paper, such as the item number 
per dimension (that was not included because the 
complexity of the theoretical models could affect 
the results), or the significance level, should be 
analysed in forthcoming researches.
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