DOI: http://dx.doi.org/10.12804/apl34.3.2016.10

Uso del propranolol como modulador de la memoria y el aprendizaje en modelos animales

Descargar Artículo
Mariana Psyrdellis, Nadia Romina Justel

Resumen


El propranolol es un antagonista β-adrenérgico no selectivo de los receptores adrenérgicos β1y β2. El rol de este sistema de neurotransmisión sobre la memoria ha sido demostrado en diversas investigaciones, ya sea tanto en la fase de codificación, consolidación, evocación como reconsolidación. El objetivo de este trabajo es realizar una revisión sobre los efectos de este β-bloqueante en diversos aprendizajes con paradigmas animales, entendiendo por medio de esto las implicaciones del sistema noradrenérgico en los procesos de memoria. El fármaco muestra resultados particulares dependiendo del momento de su aplicación y del diseño experimental empleado. En el trabajo se discuten los efectos de la droga sobre las distintas fases de la memoria en paradigmas animales con contenido espacial, estímulos gustativos y aversivos, con entrenamientos complejos y con aprendizajes de un solo ensayo

Palabras clave


propranolol; memoria; aprendizaje; modelos animales.

Texto completo:

PDF

Estadísticas de Uso:

Descargas
Año2016
Total345



Referencias


Alexander J.K., Hillier A., Smith R.M., Tivarus M.E. & Beversdorf D.Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress. Journal Cognitive Neuroscience, 19, 468 – 478. doi: 10.1162/jocn.2007.19.3.468.

Angrini, M., Leslie, J.C. & Shephard A. (1997). Effects of propanolol, buspirone, pCPA, reserpine, and chlordiazepoxide on open-field behavior. Pharmacology Biochemistry and Behavior, 59(2), 387–397. doi 10.1016/S0091-3057(97)00457-7.

Berman, D., Hazvi, S., Neduva, V. & Dudai, Y. (2000). The role of identified neurotransmitter systems in the response of insular cortex to unfamiliar taste: activation of ERK1-2 and formation of a memory trace. The Journal of Neuroscience, 20(18), 7017-7023. doi: 0270-6474/00/207017.

Bahar, A., Samuel, A., Hazvi, S. & Dudai, Y. (2003). The amygdale circuit that acquires taste aversion memory differs from the circuit that extinguishes it. European Journal of Neuroscience, 17, 1527-1530. doi: doi:10.1046/j.1460-9568.2003.02551.x.

Brantigan, C.O., Brantigan, T.A. & Joseph, N.(1982). Effect of beta blockade and beta stimulation on stage fright. The American Journal of Medicine, 72(1) ,88–94. doi: 10.1016/0002-9343(82)90592-7

Cahill, L., Prins, B., Weber, M. & McGaugh, J.L. (1994). Betaadrenergic activation and memory for emotional events. Nature, 371, 702–704.

Cain C.K., Blouin A.M. & Barad. M. (2004). Adrenergic transmission facilitates extinction of conditional fear in mice. Learning & Memory, 11, 179 –187. doi: 10.1101/lm.71504.

Campbell, A.M., Park R.C., Zoladz, P. R., Muñoz, C., Fleshner, M. & Diamond, D. M (2008). Pre-training administration of tianeptine, but not propranolol, protects hippocampus-dependent memory from being impaired by predator stress. European Neuropsychopharmacology, 18, 87–98. doi:10.1016/j.euroneuro.2007.04.004.

Cassel, J.C. (2010). Experimental Studies on the Role(s) of Serotonin in Learning and Memory Functions. Handbook of Behavioral Neuroscience - Handbook of the Behavioral Neurobiology of Serotonin, 21, 429–447. doi:10.1016/S1569-7339(10)70094-1.

Cohen, H., Kaplan, Z., Koresh,O., Matar, M.A., Geba, A. B. & Zohar, J. (2011). Early post-stressor intervention with propranolol is ineffective in preventing posttraumatic stress responses in an animal model for PTSD. European Neuropsychopharmacology, 21, 230–240. doi:10.1016/j.euroneuro.2010.11.011.

Cohen, R. & Hamburg, M. (1975). Evidence for adrenergic neurons in a memory access pathway. Pharmacology Biochemistry and Behavior, 3, 519–523. doi: 10.1016/0091-3057(75)90066-0.

Davis, M., Redmond D.E. & Baraban J. M. (1979). Noradrenergic agonists and antagonists: Effects on conditioned fear as measured by the potentiated startle paradigm. Psychopharmacology, 65, 111–118. doi: 10.1007/BF00433036.

Debiec, J. & Ledoux, J.E. (2004). Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic in the amygdala. Neuroscience, 129, 267–272. doi: 10.1016/j.neuroscience.2004.08.018.

Devauges, V. & Sara, S. J. (1991). Memory retrieval enhancement by locus coeruleus stimulation:evidence for mediation by β-receptors. Behavioural Brain Research, 43, 93-97.

Faigel, H.C. (1991). The effect of beta blockade on stress-induced cognitive dysfunction in adolescents. Clinical Pediatrics, 30, 441–445. doi: 10.1177/000992289103000706.

Fernandez Teruel, A. (2008). Psicofarmacología de la conducta: de los psicofármacos a las terapias psicológicas. Barcelona, España: Servei de Publicaciones.

Ferry, B., Roozendaal, B. & McGaugh, J.L. (1999). Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biological Psychiatry, 46, 1140–1152. doi: 10.1016/S0006-3223(99)00157-2.

Gallagher, M., Kapp B.S., Musty, R.E. & Driscoll, P.A. (1977). Memory formation: evidence for a specific neurochemical system in the amygdala. Science, 198, 423– 425. doi: 10.1126/science.20664.

Giacovich, S. & Enero, M. A. (1984). Decreased brain serotonergic activity after acute propranolol. European Journal of Pharmacology, 100, 123–125. doi:10.1016/0014-2999(84)90325-X.

Gibbs, M.E. & Summers, R.J. (2002). Role of adrenoceptor subtypes in memory consolidation. Progress in Neurobiology, 67, 345–391. doi: 10.1016/S0301-0082(02)00023-0.

Gold, P. & Buskirk R.V. (1978). Effects of ¤ and β Adrenergic receptor antagonists on post-trial epinephrine modulation of memory: Relationship to post-training brain norepinephrine concentrations. Behavioral Biology, 24, 168—184. doi: 10.1016/S0091-6773(78)93045-6.

Gold, P. E., Vogt, J. & Hall, J. (1986). Glucose effects on memory: Behavioral and pharmacological characteristics. Behavioral and Neural Biology, 46, 145–155. doi: 10.1016/S0163-1047(86)90626-6.

Grillon, C., Cordova, J., Morgan, C.A., Charney, D.S. & Davis, M. (2004).Effects of the beta-blocker propranolol on cued and contextual fear conditioning in humans. Psychopharmacology, 175, 342–352. doi: 10.1007/s00213-004-1819-5.

Hatfield, T. & McGaugh, J.L. (1999). Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiology of Learning and Memory, 71, 232–239. doi: 10.1006/nlme.1998.3875.

Heron,C., Gould, T.J. & Bickford, P. (1995). Acquisition of a runway motor learning task is impaired by a beta adrenergic antagonist in F344 rats. Behavioural Brain Research, 78, 235 241. doi: 10.1016/0166-4328(95)00252-9.

Hunziker, L. & Pérez-Acosta, A. (2001). Modelos animales en psicopatología: ¿una contribución o una ilusión? Avances en Psicología clínica latinoamericana, 19, 37-50.

Introini-Collison, I. B., Dalmaz, C., & McGaugh, J. L. (1996). Amygdala beta-noradrenergic influences on memory storage involve cholinergic activation. Neurobiology of Learning and Memory, 65, 57–64. doi: doi:10.1006/nlme.1996.0006.

Izquierdo, I., Da Cunha, C., Rosat, R., Jerusalinsky, D., Ferreira, M. B. & Medina, J. H. (1992). Neurotransmitter receptors involved in posttraining memory processing by the amygdala, medial septum, and hippocampus of the rat. Behavioral and Neural Biology, 58, 16–26. doi:10.1016/0163-1047(92)90847-W.

Ji, J.Z., Zhan, X.H., Jing, H., Yan Mei, C., Jian Hong, W. & Yuan Y.M. (2008). Morphine and propranolol co-administration impair consolidation of Y-maze spatial recognition memory. Brain Research, 1230, 150 – 157. doi: doi:10.1016/j.brainres.2008.06.061.

Ji, J.Z., Zhang, X.H. & Li, B.M. (2003). Deficient spatial memory induced by blockade of beta-adrenoceptors in the hippocampal CA1 region. Behavioral Neuroscience, 117, 1378–1384. doi: 10.1037/0735-7044.117.6.1378.

Justel, N. & Psyrdellis, M. (2014). Novedad y modulación de la memoria: Mecanismos neurobiológicos implicados. Interdisciplinaria, 31(2), 1-8.

Justel, N., Psyrdellis, M., Pautassi, R. & Mustaca, A. (2014).Propranolol reverses open field effects on frustration. Neurobiology of Learning and Memory, 116, 105–111. doi: 10.1016/j.nlm.2014.09.00.

Justel, N. & Ruetti, E. (2012). La memoria del sabor. Revista Argentina de Ciencias del Comportamiento, 4(1), 31-43.

Katsuki, H. (1997). Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. Journal of Neurophysiology, 77, 3013–3020.

LaLumiere, R. T., Buen, T. V. & McGaugh, J. L. (2003). Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. Journal of Neuroscience, 23, 6754–6758. doi: 0270-6474/03/236754-05.

Lee,H. J., Berger, S. Y., Stiedl, O., Spiess, J. & Kim, J. J. (2001). Posttraining injections of cathecolaminergic drugs do not modulate fear conditioning in rats and mice. Neuroscience Letters, 303, 123–126. doi:10.1016/S0304-3940(01)01733-5.

Lennartz, R.C., Hellems, K.L., Mook, E.R. & Gold, P.E. (1996).Inhibitory avoidance impairments induced by intra-amygdala propranolol are reversed by glutamate but not glucose. Behavioral Neuroscience, 110, 1033–1039. doi: 10.1037//0735-7044.110.5.1033.

Liang,K.C., Juler, R. G. & McGaugh, J. L. (1986). Modulating effects of post-training epinephrine on memory: Involvement of the amygdala noradrenergic system. Brain Research, 368, 125–133. doi: doi:10.1016/0006-8993(86)91049-8.

Liang, K. C., McGaugh, J. L. & Yao, H. (1990). Involvement of the amygdala pathways in influenceof posttraining amygdala norepinephrine and peripheral epinephrine on memory age. Brain Research, 508, 225–233. doi:10.1016/0006-8993(90)90400-6

Lucki, I., Ward, H.R. & Frazer, A. (1989). Effect of 1mg chlorophenyl-piperazine and 1mg trifluoromethylphenyl)piperazine on locomotor activity. Journal of Pharmacology and Experimental Therapies, 249, 155-164.

McGaugh, J.L. (2000). Memory: a century of consolidation. Science, 287, 248 –251. doi: 10.1126/science.287.5451.248.

McGaugh, J.L., Cahill, L. & Roozendaal, B. (1996). Involvement of the amygdala in memory storage: interaction with other brain systems. Proceedings of the National Academy of Sciences, 93, 13508–13514.

Middlemeis, D. (1984). Stereoselective blockade at [3H]5-HT binding sites and at the 5HT autoreceptor by propranolol. European Journal of Pharmacology, 101, 289–293. doi: 10.1016/0014-2999(84)90173-0.

Miranda, M.I., Rodríguez-García, G., Reyes-López, J.V., Ferry, B. & Ferreira, G. (2008). Differential effects of β-adrenergic receptor blockad in basolateral amygdala or insular cortex on incidental and associative taste learning. Neurobiology of Learning and Memory, 90, 54–61. doi: 10.1016/j.nlm.2008.01.004.

Morris, R.W., Westbrook, R.F. & Killcross., A. S. (2005). Reinstatement of extinguished fear by beta-adrenergic arousal elicited by a conditioned context. Behavioral Neuroscience, 119, 1662–1671. doi: 10.1037/0735-7044.119.6.1662.

Murchinson, C. F., Zhang, X. Y., Zhang, W. P., Ouyang, M., Lee, A., & Thomas, S. A. (2004). A distinct role for norepinephrine in memory retrieval. Cell, 117, 131–114. doi:10.1016/S0092-8674(04)00259-4.

Nielson, K. A., Czech, D. A. & Laubmeie, K.K. (1999) Chronic Administration of Propranolol Impairs Inhibitory Avoidance Retention in Mice. Neurobiology of Learning and Memory, 71, 248–257. doi:10.1006/nlme.1998.3873.

Ouyang, M. & Thomas S.A. (2005). A requirement for memory retrieval during and after long-term extinction learning. Proceedings of the National Academy of Sciences, 102, 9347–9352.

Pitman, R. P., Sanders, K. M., Zusman, R. M., Healy, R. A., Cheema, F., Lasko, N. B., Cahill, L. & Orr, S.P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51, 189–142. doi: 10.1016/S0006-3223(01)01279-3.

Pontecorvo, M., Clissold, D., White, M., & Ferkany, J. (1991). N-Methyl-D-aspartate antagonists and working memory performance: Comparison with the effects of scopolamine, propranolol, diazepam, and phenylisopropyladenisone. Behavioral Neuroscience, 105, 521–535.

Prut, L. & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463, 3 – 33. doi:10.1016/S0014-2999(03)01272-X.

Przybyslawski, J., Roullet, P. & Sara, S.J. (1999). Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. Journal of Neuroscience, 19 (15), 6623-6628. doi: 0270-6474/99/196623.

Rex, A., Voigt, J.P., Voits, M. & Fink, H. (1998). Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs. Pharmacology Biochemistry and Behavior, 59, 677 – 683. doi:10.1016/S0091-3057(97)00461-9.

Robinson, M.J. & Franklin, K.B. (2007). Central but not peripheral beta-adrenergic antagonism blocks reconsolidation for a morphine place preference. Behavioral Brain Research,182, 129–134. doi: doi:10.1016/j.bbr.2007.05.023.

Robinson, M.J. & Franklin, K.B. (2010). Reconsolidation of a morphine place preference: impact of the strength and age of memory on disruption by propranolol and midazolam. Behavioral Brain Research, 213(2), 201-207. doi: 10.1016/j.bbr.2010.04.056.

Robinson, M.J., Ross, E.C & Franklin K.B. (2011).The effect of propranolol dose and novelty of the reactivation procedure on the reconsolidation of a morphine place preference. Behavioural Brain Research, 216, 281–284. doi:10.1016/j.bbr.2007.05.023.

Rodriguez-Romaguera, J., Sotres-Bayon, F., Mueller, D & Quirk, J.G (2009). Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction. Biological Psychiatry, 65, 887– 892. doi:10.1016/j.biopsych.2009.01.009.

Roozendaal, B., de Quervain. D. J.F., Schelling, G. & McGaugh, J.L. (2004). A systemically administered β-adrenoceptor antagonist blocks corticosterone-induced impairment of contextual memory retrieval in rats. Neurobiology of Learning and Memory, 81, 150–154. doi:10.1016/j.nlm.2003.10.001.

Ruetti, E., Justel, N., Mustaca, A. & Boccia, M. (2014). Corticosterone and propranolol's role on taste recognition memory. Pharmacology, Biochemistry and Behavior, 127, 37–41. doi: org/10.1016/j.pbb.2014.09.013.

Sara, N., Datta, H. & Sharma P.L. (1991).Effects of morphine on memory: interactions with naloxone, propranolol and haloperidol. Pharmacology, 42, 10–4.

Sara, S.J., Roullet, P. & Przybyslawski, J. (1999). Consolidation of memory for odor-reward association beta-adrenergic receptor involvement in the late phase. Learning & memory, 6, 88–96.

Sara, S.J., Vamkov, A. & Hervtz, A (1994). Locus Coeruleus-evoked responses in behaving rats: a clue to the role of noradrenalin in memory. Brain Research Buletin, 35, 457-465. doi:10.1016/0361-9230(94)90159-7.

Schneider, A. M, Simson, P.E., Atapattu, R. K. & Kirby, L. G. (2011). Stress-dependent impairment of passive-avoidance memory by propranolol or naloxone. Pharmacology, Biochemistry and Behavior, 98, 539–543. doi:10.1016/j.pbb.2011.03.005.

Sprouse, S.J. & Aghajanian, G.K. (1986). Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HTIA selective agonists. European Journal of Pharmacology, 128, 295-298. doi: 10.1016/0014-2999(86)90782-X.

Stein, M.B., Kerridge, C., Dimsdale, J.E. & Hoyt, D.B. (2007). Pharmacotherapy to prevent PTSD: Results from a randomized controlled proof-of-concept trial in physically injured patients. Journal of Traumatic Stress, 20, 923–932. doi:10.1002/jts.20270.

Sternberg, D. B & Gold, P.E. (1985). Effects of ¤ and β adrenergic receptor antagonists on retrograde amnesia produced by frontal cortex stimulation. Behavioral and Neural Biology, 29, 289-30. doi: doi:10.1016/S0163-1047(80)90164-8.

Stuchlik, A., Petrasek, T. & Vales, K. (2009). A dose–response study of the effects of pre-test administration of beta-adrenergic receptor antagonist propranolol on the learning of active place avoidance, a spatial cognition task, in rats. Behavioural Brain Research, 200, 144–149. doi:10.1016/j.bbr.2009.01.010.

Sun, H., Mao, Y., Wang, J. & Ma, Y. (2011). Effects of beta-adrenergic antagonist, propranolol on spatial memory and exploratory behavior in mice. Neuroscience Letters, 498, 133–137. doi: doi:10.1016/j.neulet.2011.04.076.

Suresh, V. & Steven, R. (2003). Drugs for preventing migraine headaches in children. Cochrane Database of Systematic Reviews. 4, Art. No.: CD00276. doi: 10.1002/14651858.CD00276.

Thomas, J., Moody, T.D., Makhinson, M. & O'Dell, T.J. (1996). Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron, 17, 475–482. doi: 10.1016/S0896-6273(00)80179-8.

Tuinstra, T. & Cools, A. R. (2000). High and low responders to novelty: effects of adrenergic agents on regulation of accumbaI dopamine under challenged and non-challenged conditions. Neuroscience, 99, 55-64. doi: 10.1016/S0306-4522(00)00139-1.

Vaiva, G., Ducrocq, F., Jezequel, K., Averland, B., Lestavel, P., Brunet, A. & Marmar, C.R. (2003). Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biological Psychiatry, 54, 947–949. doi:10.1016/S0006-3223(03)00412-8.

Walker, D.L. & Davis, M. (2002). Light-enhanced startle: Further pharmacological and behavioral characterization. Psychopharmacology, 159, 304 –310. doi: 10.1007/s002130100913.

Winder, D.G., Martin, K.C., Muzzio, I.A., Rohrer, D., Chruscinski, A., Kobilka, B. & Kandel, E.R. (1999). ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron, 24, 715–726. doi:10.1016/S0896-6273(00)81124-1.

World Health Organization, WHO (2013). Who Model List of Essential Medicines-18th list. WHO Medicines web site. http://www.who.int/medicines/publications/essentialmedicines/en/index.html

Zhang, G., Herborg, N., Ásgeirsdóttira, S. J., Cohenc, A. H., Munchowa, M. P., Barreraa, R. W. & Stackman Jr. (2013). Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology, 64, 403–413 doi:10.1016/j.neuropharm.2012.06.007.

Zhang, J., He, J., Chen, Y.M., Wang, J.H. & Ma, Y.Y. (2008). Morphine and propranolol co-administration impair consolidation of Y-maze spatial recognition memory. Brain Research, 1230, 150–157.doi: 10.1016/j.brainres.2008.06.061.